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ABSTRACT 

A genetic algorithm was used to optimize the power output of multi-

junction solar cells.  Solar cell operation was modeled using the Silvaco ATLASTM 

software.  The output of the ATLASTM simulation runs served as the input to the 

genetic algorithm.  The genetic algorithm was run as a diffusing computation on a 

network of eighteen dual processor nodes.  Results showed that the genetic 

algorithm produced better power output optimizations when compared with the 

results obtained using the hill climbing/gradient approach. 
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EXECUTIVE SUMMARY 

The current state of the solar cell industry is that development occurs by 

the fabricate-and-test method.  Engineers design cells, have them fabricated, test 

them in the lab, and then repeat the process.  The industry has not found any 

suitable software platforms which may be used to accurately predict or simulate 

cell performance.  Over the past four years, researchers at NPS have found a 

way to model solar cells within Silvaco’s ATLASTM software.  ATLASTM is a 

physically based simulator which models the flow of charge carriers through a 

device based on the physical structure defined by the user. 

Solar cell models for single, dual, triple, and quad-junction solar cells have 

been modeled.  The single, dual, and triple-junction cell models have been 

validated against experimental results for accuracy.  The quad-junction cell is a 

design proposal and has not yet been fabricated.  ATLASTM cell models have 

been used for validation against experimental results and to optimize designs for 

future cells.  In addition, radiation effects on a single-junction cell have been 

successfully modeled and validated against experimental data. 

The optimization of cell designs was initially a trial and error process.  One 

researcher, Drew Bates, used a genetic algorithm to optimize the individual 

layers of a multi-junction cell and developed an iterative current-matching routine 

for the optimization of the combined multi-junction cell.  Bates admitted that his 

optimization was limited by the amount of computation time available during his 

time as a student.  This thesis explores the validity of Bates’ approach by using a 

coarse sampling and gradient ascent algorithm as well as a variant of the genetic 

algorithm to more completely explore the solution space.  To accommodate a 

larger sample of the solution space, a distributed computing platform was 

developed and implemented. 

Bates genetic algorithm implementation focused on seven cell traits 

modeled with 16 possible values for each trait.  For each cell type tested, a 
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coarse sampling of the solution space was conducted by taking all permutations 

of three values of each trait:  the low, middle, and high values.  This produced 

2187 unique chromosomes spread evenly throughout the solution space.  

Following simulation, the five best candidates were subjected to a gradient 

ascent search.  The gradient process simulated a list of chromosomes derived by 

taking every permutation of trait values equal to, one higher, and one less than 

the candidate’s trait values.  Once simulations were complete, the next gradient 

search was centered on whatever point had the maximum power output.  This 

gradient ascent method continued until a local maximum was reached.  After 

exercising the algorithm on each cell type, no improvements from Bates’ results 

were obtained.  This confirms the nonlinearity of the solution space for this 

problem.  If each of the seven traits had a linear effect on output power, the 

gradient search method would always lead to the global maximum.  In most 

searches, each candidate followed its gradient to a different local maximum. 

The second approach was to apply a genetic algorithm using the 

MATLABTM Genetic Algorithm and Direct Search Toolbox as a front-end 

combined with the distributed computing system as the back end.  Genetic 

algorithm properties used by Bates were preserved with two exceptions.  The 

first is that the simulations were continued out to 50 generations vice 20.  The 

second exception was that the mutation rate was increased because the 

populations were observed to converge by the 20 generation mark.  In almost 

every cell configuration tested, an improvement in cell output power was 

obtained. 

Bates utilized an iterative current-matching routine to optimize multi-

junction cells.  Quad-junction cells are essentially four separate solar cells 

stacked on top of one another and wired in series.  While the overall voltage is 

the sum of the four layers, the current is limited by the layer producing the least 

current.  The current-matching routine works by adjusting cell thicknesses to 

match the currents.  For example, the top layer normally produces the highest 

voltage and lowest current.  If the top layer is made thicker, its voltage remains 
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unchanged while its current production increases.  In addition, more light is 

absorbed and less is transmitted through to the other layers.  This reduces 

current production in the other layers but brings the total cell to a higher output 

power by increasing the top layer’s limiting current level.  As this process was 

used, many cases occurred where layer thicknesses were needed which had not 

been specifically optimized for using the genetic algorithm.  In these cases, 

approximations were made using thickness and power values of the nearest 

known cell configurations. 

In the final experiment of this thesis, a real-valued genetic algorithm was 

applied to the total quad-junction cell.  The results of this algorithm were 

inconclusive.  In each generation of results, the power values for an entire 

population would have an identical power value even though the cell 

configurations were different.  When known optimized cell parameters were 

inserted into the population, those power values would match previous results 

while the remainder of the population would have a common power value 

different than the optimized cell.  The root cause of this needs to be investigated 

further.   

In initial investigation, two sources of error were found.  The first is in the 

way multi-junction cells are modeled in ATLASTM.  At this time, there is not a 

working model of the tunnel junction between the layers of the cell.  To model the 

cell, the space occupied by the tunnel junction is modeled by a vacuum with 

optical properties that don’t cause any refraction between the two cell layers.  

Separate contacts for each layer are modeled and the IV curve is extracted for 

each of the individual layers.  This ties into the second source of error: the IV 

curve solve points found by ATLASTM are focused around each junction layer’s 

maximum power point since this has been the focus of research.  However, when 

three other junction layers are limited to the fourth layer’s current, in most cases 

there are no IV curve solve points for the other three layers at that current level 

since it’s not near the layers’ maximum power current.  When this occurs, the 

MATLABTM algorithm which computes output power conducts a linear 
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approximation based on the two nearest points.  While this sometimes falls on a 

very linear portion of the IV curve, it sometimes does not. 

The development of a tunnel junction for the multi-junction cell model is 

the most promising remedy to this problem.  It would allow the direct 

measurement of the cell’s total output power without the need to measure each 

junction layer independently and perform calculations. 

Through this research, Drew Bates’ optimization approach for single-

junction cells using the genetic algorithm was validated.  A coarse sampling and 

gradient ascent algorithm did not find improved solar cell output power values.  

Improved results were found in this research only by continuing his algorithm for 

more generations and with a higher mutation rate.  The optimization of the quad-

junction in this thesis was inconclusive,  The cell itself and optimization 

approaches can be significantly improved by the development of the tunnel 

junction within the ATLASTM multi-junction cell model. 
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I. INTRODUCTION 

In 1839, Antoine-Cesar Becquerel discovered that some combinations of 

materials produced electricity when exposed to light [Ref: 1].  The first cell with 

similar construction to modern cells was fabricated by Charles Fritts in 1877 by 

coating selenium with a nearly transparent thin layer of gold [Ref: 1].  However, 

his cells were less than 1 percent efficient in converting the received light energy 

into useful electric current [Ref: 1].  While minor improvements were made up 

through the 1930’s, solar cells were not considered as a potential power source 

until Russell Ohl developed the first silicon solar cell in 1941 [Ref:1].  Subsequent 

improvements by Pearson, Chapin, and Fuller brought the cell’s efficiency up to 6 

percent in 1954 [Ref. 1]. 

Today’s single-junction solar cells range in the 15-20 percent range.  

Triple-junction solar cells, with individual junctions stacked on top of one another, 

have been fabricated with an advertised efficiency of 29.3 percent [Ref. 2].  The 

field is always expanding with research on various construction techniques and 

potential new compounds for use in the cells.  Recently proposed designs could 

increase cell efficiency well into the mid 30 percent range.  However, at this time, 

these types of cells are too costly for most applications. 

Unlike terrestrial applications, spacecraft operate outside the light-

degrading effects of Earth’s atmosphere; solar cells are exposed to significantly 

more solar energy.  In addition, solar cells offer one of the only renewable energy 

sources for a satellite in orbit.  With the cost of putting something in orbit around 

the Earth in the vicinity of $10,000 per pound, acquiring more advanced high-

cost, high-efficiency, multi-junction designs can be justified. 

While the industry standard solar cell development process is fabricate-

and-test, researchers at the Naval Postgraduate School have developed a 

software based model of solar cells which closely replicates the performance of 

well-documented experimental cells of the same design.  More recent efforts 
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have turned to using the computer model as a design tool to optimize certain cell 

parameters in order to attain maximum power output.  The most recent 

optimization approach used a genetic algorithm to improve solar cell 

performance.  In this thesis, the results Bates obtained through experimentation 

with the genetic algorithm were compared with results obtained using the coarse 

sampling/gradient ascent approach as well as a modified genetic algorithm 

approach. 

Chapter II covers solar cell operation, the theory of genetic algorithms, 

and modeling solar cells using the Silvaco ATLASTM software.  Chapter III 

describes the previous optimization approach studied in this thesis.  Chapter IV 

gives the approach used for this thesis and the results obtained.  Chapter V gives 

conclusions and recommendations for further extension of this work.  Appendix A 

gives a more detailed description of the input decks used for Silvaco’s ATLASTM 

software.  Appendix B discusses the challenges in adapting input decks from the 

Silvaco software running under Windows to a Linux-based computer.  Appendix 

C gives programmer’s notes and code excerpts on how the distributed 

computation was accomplished.  Appendix D gives programmer’s notes on 

challenges faced using the MATLABTM Genetic Algorithm and Direct Search 

Toolbox. 
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II. BACKGROUND 

A. SOLAR CELL BASICS (SEMICONDUCTOR BASICS) 
Solar cells are essentially electronic devices that convert energy received 

from a light source into usable electricity.  Their construction and operation is 

based on several material properties and some unique behavior when the 

materials are combined in a specific way.  This section documents those 

properties and combinations which allow a single junction solar cell to operate. 

1. Definition of a Material’s Bandgap 
At present, silicon (Si) is the basis of construction of the majority of solar 

cells.  The reason for this has to do with Si’s unique atomic structure and material 

properties.  Recall that Si is a Group IV element with atomic number 14.  The 

Group IV designation denotes four electrons in its outermost shell.  This occurs 

because, as the atomic number increases, electron shells are filled in the 

following order: 

 
 

Figure 1.   Order of electron shell filling [From Ref. 3] 
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For Si, this means that in the first energy level, two electrons occupy the 

1s orbital.  Within the second energy level, two electrons occupy the s orbital and 

six occupy the p orbital.  Finally, within the third energy level, two electrons 

occupy the s orbital and two occupy the p orbital.  This makes a total of 14 

electrons. 

 

 
Figure 2.   Silicon Electron Shell Diagram [From Ref. 4] 

 
As a general rule, most elements are more stable when they contain a 

total of eight electrons in their outer, or valence, shell.  Si normally accomplishes 

this through the formation of covalent bonds with other Si atoms.  In this way, a 

Si atom surrounded by four other Si atoms can share one electron with each of 

the other four in order to have a “complete” outer shell.  Note that in the following 

diagram, only the outer shell electrons are shown. 
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Figure 3.   Silicon covalent bonds in a homogeneous mixture [After Ref. 5] 
 

The center Si molecule shown above has eight electrons occupying its 

outermost shell.  The atom is fairly stable in this configuration and the eight 

electrons are said to be in the valence band:  these electrons remain with the Si 

atom, requiring an external influence to break an electron free.  A free electron 

derived from a donor atom is said to occupy the conduction band.  In the 

conduction band, the electron is free to move throughout the material.  When an 

electron leaves its donor atom, a “hole” with net positive charge is created.  The 

energy required to promote an electron from the valence band to the conduction 

band is called the material’s bandgap, as shown in Figure 5. 
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Figure 4.   Energy band diagram for three types of materials [After Ref. 5] 
 

The green region represents the conduction band, the red region 

represents the valence band, and the space in between is the bandgap.  No 

energy is required to allow electrons to move about freely within a conductor.  

Conversely, a significant amount of energy is required to allow an insulator’s 

electrons to move about freely.  Semiconductors, of which Si is classified, fall 

somewhere in the middle.  At zero Kelvin, all electrons are in the valence band.  

Once above zero Kelvin, electrons can gain enough energy introduced through 

temperature or other external influences to move into the conduction band.  

However, the number of electron-hole pairs formed in homogeneous Si at room 

temperature is on the order 1010 total electron-hole pairs in a cubic centimeter of 

Si [Ref. 6]. 

In order to increase the number of electron-hole pairs in a given volume, a 

doping process may be used.  Doping is a process by which impurities are added 

to Si when it is made.  For solar cell applications, doping is typically conducted 

with Group III or Group V elements.  For our first example, consider the addition 

of arsenic (As) to pure Si.  Arsenic is a Group V element with five electrons in its 

outer shell.  When placed in Si, it forms covalent bonds with four surrounding Si 
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atoms, creating an outer shell with nine electrons, four shared and five in As’s 

outer shell.  The energy required for the ninth electron to reach the conduction 

band is extremely low.  As shown in the energy band diagram of Fig. 6, the ninth 

electron moves into the conduction band.  This is called n-type doping since it 

frees negative charge carriers to move within the material. 

 

] 
 

Figure 5.   N-Type doping using Arsenic (As) in Silicon [After Ref. 5] 
 

P-type doping, on the other hand, introduces a Group III material into the 

Si.  In this example, gallium (Ga) is added.  Since Ga only has three electrons in 

its outer shell, covalent bonds with four adjacent Si atoms leave Ga with only 

seven electrons in its outer shell.  The missing electron is referred to as a hole.  

The hole is a positive charge carrier and is the basis for calling this a p-type 

material. 
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Figure 6.   P-type doping using Gallium (Ga) in Silicon [After Ref. 5] 
 

2. The P-N Junction 
Recall that even though a n-type material has electrons in the conduction 

band, it is electrically neutral since the total material has just as many protons as 

electrons. In addition to electrons, which are the majority carrier, a small number 

of electron hole pairs are formed at room temperature simply by thermal energy.  

The holes created from this process are called the minority carrier for a n-type 

material.  Consider what would happen when a thin layer of p-type material is 

placed in direct contact with an n-type material.  The first event that occurs is that 

a small number of free electrons from the n-type material near the junction move 

to fill holes in the p-type material.  The movement of electrons out of the n-type 

material leaves it positively charged.  Conversely, the addition of electrons to the 

p-type material gives it a negative charge.  Similarly, a small number of holes 

move from the p-type material across the junction into the n-type material where 

they combine with electrons.  This leaves a region of the n-type material with a 

positive charge and a region of the p-type with a negative charge as with the 

movement of electrons.  This region is known as the depletion zone of a P-N 

junction and the movement of carriers is known as diffusion current.  This effect 

quickly reaches an equilibrium because of a resulting electro-static field.  The 
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slightly positive and negative “poles” of the depletion region create a field 

pointing from the n-type to the p-type material (from positive to negative charge).  

Since like charges repel, the negative field in the depletion region of the p-type 

material prevents movement of further electrons from the n-type material to the 

depletion zone.  The same effect occurs to prevent further movement of holes 

from the p-type material into the depletion region.  Recall that in the n-type 

material there are a small number of naturally occurring holes termed minority 

carriers.  This electro-static field of the depletion region sweeps all minority 

carriers into the depletion region. 

 

 
 
Figure 7.   Formation of the depletion region at (a) time zero and (b) equilibrium 

[After Ref. 5] 
 

At first inspection, it seems that one could attach contacts to the top and 

bottom of this material and have a limitless source of energy.  However, junction 

effects between the semiconductor materials and the contact conductors prevent 

the junction alone from generating energy.  However, if an external energy 

source can supply energy to the P-N junction in order to create electron-hole 

pairs, a useful current may be created. 
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3. Solar Cell Operation 
A solar cell operates through the introduction of energy into the P-N 

junction.  Photons are the fundamental particle of energy transmission using 

light.  Photons traveling at the speed of light contain energy.  When a photon 

travels into a P-N junction, it can be absorbed by the material in the junction to 

create an electron-hole pair.   

 

 
 

Figure 8.   Electron-hole pair generation through a collision with a photon [After 
Ref. 5] 

 
Without a conductor on the top and bottom of the P-N junction, the 

electron and hole would move around and eventually recombine to release 

energy in the form of heat.  However, if the P-N junction is made sufficiently thin, 

an electron generated in the n-type material will be swept into the top contact and 

its corresponding hole will be swept into the depletion region because of the 

electro-static field.  The electron will then travel through a circuit and then 

recombine with a hole generated in the p-type material or be swept back into the 

depletion region by the electro-static field.  Conversely, holes created in the p-

type material move in the opposite direction:  this creates a current in the circuit 

which may be harnessed to accomplish useful work. 
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Figure 9.   Solar cell in operation [After Ref. 5] 
 

4. Solar Cell Performance 
a. Techniques of Characterization 
In measuring solar cell performance, standard electrical units are 

used.  Typical benchmarking of cells occurs using specially designed lighting 

equipment which accurately reproduces the spectral content and intensity of light 

encountered in space.  The normal means of displaying this data is through the 

current-voltage (IV) curve of the device.  The curve indicates what voltage and 

current the device will produce for a given load.  In addition, it defines the open-

circuit voltage (Voc) and short-circuit current (Isc) for the cell.  The Voc is the 

maximum voltage the device will produce and is measured with no load attached 

to the device.  The Isc, on the other hand, is the maximum current the cell can 

produce and is measured with a zero voltage or short circuit.  Figure 10 shows 

the elements described above. 
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Figure 10.   IV curve for a typical solar cell [After Ref. 6] 
 

Based on the IV curve of a solar cell, a couple benchmarks for cell 

performance can be derived.  The first, efficiency, is based on how much output 

power is generated compared to the amount available from the light source [Ref. 

6]. 

 100%mp

in

P
P

η = •  (1) 

In equation (1), η is the efficiency of the cell, Pin is the power 

provided by incoming light, and Pmp is the power generated by the cell calculated 

using equation (2). 

 P I V= •  (2) 
Second, the fill factor is a measure of the sharpness of the knee of 

the IV curve.  A fill factor of 1% would be a flat curve while a fill factor of would be 

a right angle.  Equation (3) shows how the fill factor is derived [Ref 6]. 
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Note that efficiency and fill factor may be derived from data on the 

IV curve as long as the incident light intensity is known.  For this thesis, efficiency 

calculations are based on an incident light energy of 135 milliwatts per square 

centimeter.  Current single junction solar cells have efficiencies in the 15% range. 

b. Hindrances to Performance 
The factors affecting cell performance are numerous, such as those 

listed below from Ref.5: 

1. Light incident on a cell’s surface is prone to reflection.  This is a 

combination of the angle of incidence of the light and material properties.  An 

angle of incidence far from perpendicular combined with a highly reflective 

material on the cell’s surface may account for up to 36% reflection of the 

incoming photons.  Specially designed anti-reflective coatings on a cell’s surface 

may reduce the amount of light reflected to approximately 5% as long as the 

angle of incidence is close to perpendicular. 

2. Not all photons are created equal.  Some photons do not have 

sufficient energy to promote an electron from the valence band to the conduction 

band.  However, these photons can still be absorbed and result in the generation 

of heat.  Heat in an electrical device yields increased resistance and a lowering 

of cell performance. 

3. Photons with too much energy will promote an electron to the 

conduction band and also generate excess heat. 

4. While the electro-static field of the depletion region sweeps charge 

carriers to opposite sides of the cell, some internal recombination does occur 

with a resulting heat gain. 

5. Resistance in the metal contact materials causes a drop in output 

power and increases cell temperature. 

6. While the manufacture of solar cells is a refined process, it is still 

subject to material defects.  Imperfections in the semiconductor crystal structures 

degrade cell performance. 
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7. The conducting grid on the top of a cell shades approximately 8% 

of its top surface area.  These contacts do not allow light to pass through into the 

cell. 

8. If the cell is above or below its designed operating temperature, the 

vibration of the crystal lattice structure will interfere with the movement of charge 

carriers through the cell. 

9. A photon is a very small particle as are the atoms in a crystal 

structure.  Not all photons traveling into a solar cell will be absorbed by a 

semiconductor atom.  Some of this effect is mitigated through the addition of a 

reflective surface on the bottom of the cell.  This doubles the opportunity for 

absorption by forcing the photon back through the cell on its return trip. 

B. MULTI-JUNCTION SOLAR CELL FUNDAMENTALS 
1. Principle of Operation 
As discussed in part A, a material’s bandgap defines the amount of energy 

required to move an electron from the valence band to the conduction band.  

Light photons contain varying amounts of energy.  The energy contained is 

inversely related to the wavelength of light which contains the energy.  The 

equation 

 hcE
λ

=  (4) 

 
defines the energy E in Joules where h is Planck’s constant (4.136×10-15 

eV·sec), c is the speed of light (3.0×108m/sec), and λ is the wavelength of light 

being considered [Ref. 6].  In total, there is approximately 130 milli-Watts(mW) 

per square centimeter (cm2) of energy available in Earth orbit [Ref. 6].  Since h 

and c are constants, the equation may be reduced to: 

 1.24E
λ

=  (5) 

where λ is measured in micrometers (microns) and E is in electron volts.  Light 

conditions in Earth orbit are commonly referred to as Air Mass Zero (AM0).  The 

light energy, however, is spread out among various wavelengths. 
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A solar cell may be tuned to respond to different parts of the light 

spectrum by adjusting the materials and construction of a cell.  However, there is 

not a single cell material which absorbs the entire spectrum of light.  The 

following figure shows the amount of energy contained in light in Earth orbit 

(AM0) according to the wavelength of light and energy contained.  The spectral 

response of three cell types are plotted too.  The plots show which portions of the 

spectrum each of the different cell materials can capture to produce electricity.  

The purple curve represents the total irradiance at given wavelength or energy 

level in AM0. 

 
 
Figure 11.   Irradiance plotted by wavelength (lower left) and contained energy 

(upper right) [After Ref. 6] 
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2. Challenges with Multi-Junction Cells 
a. Parasitic Junction and Tunnel Junctions 
The goal in designing multi-junction cells is to select enough layers 

with varying properties in order to capture and efficiently convert as much of the 

available light spectrum as possible.  The Holy Grail of solar cells is to reach 

100% efficiency and generate 130mW/cm2 for every solar cell on a spacecraft.  

However, all the conditions mentioned at the beginning of this chapter which 

degrade solar cell performance also apply to multi-junction solar cells.  In 

addition, there is one technical difficulty with “stacking” individual junctions on top 

of one another in a single cell.  When two P-N junctions are put in direct contact 

with one another, a parasitic P-N junction is formed between them with an 

electro-static field opposing the flow of current between the two junctions as 

shown in Figure 12a.  This parasitic junction is strong enough to cause 

unacceptable electrical losses within the cell by opposing current movement.  To 

mitigate the electrical losses, the introduction of a heavily doped reverse-biased 

P-N junction between the two cells allows current to flow with minimal loss.  This 

P-N junction is called a tunnel junction and it creates an electro-static field in the 

same direction as the P-N junctions of the top and bottom junction layers per 

figure 12b. 
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Figure 12.   Simple stacking with parasitic junction(a) and tunnel junction (b) 
[From Ref. 6] 

 
With this tunnel junction in place, there is effectively a series 

connection between junction-layers which allows current to flow with only a 

minimal loss in voltage. 

b. Materials Incompatibility 
Another problem encountered with multi-junction cells is in the 

compatibility of materials within the manufacturing process.  While there have 

been attempts to mechanically stack cells manufactured separately, the end 

results were less than optimal.  The final cell structure was much thicker and 

heavier than desired.  In addition, losses were encountered by the reflection of 

light when passing between cells.  Consequently, current efforts are on building 

the entire cell as one unit known as a monolithic multi-junction cell.  However, 

when growing crystals of various materials on top of one another, the materials 

must have compatible crystal lattice patterns to properly form.  In some 
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instances, a window layer may be grown on the top of the cell in order to bridge 

some of the material differences, but this does not work in all cases.  

Consequently, the process of selecting layers for a multi-junction cell must be 

based on performance criteria as well as materials compatibility. 

c. Shadowing Effect 
Since layers of a multi-junction cell are stacked on top of one 

another, light entering a bottom layer of the cell has already been filtered by the 

layers above it.  If the thickness of a top layer is increased, the top layer will have 

increased performance but the layers below it will consequently receive less light 

and have reduced photogeneration.  Conversely, if the thickness of the top layer 

is reduced, the top layer will produce less energy but will allow more light to pass 

through to lower layers. 

d. Electrical Limitations 
When producing electricity, a monolithic solar cell looks a lot like 

four dissimilar batteries connected in series.  Each battery will have different 

voltage and current ratings for a given electrical load.  When connecting them in 

series, their overall power production is governed by the following equation. 

 total load junctionsP I V= ∑  (6) 

As the number of junction layers increases, the load current 

becomes a more difficult design concern.  In order to harness the maximum 

power from a junction layer, load current must be close to the junction layer’s 

maximum power point current.  However, junction layers based on different 

materials can have quite different current-voltage curve characteristics, as the 

examples in Figure 13 illustrate. 
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Figure 13.   Typical Current-Voltage curves for solar cells based on various 
materials [From Ref. 6] 

 
In order to obtain the most efficient power output from a cell, all the 

current values at maximum power need to be matched.  The solution to this is 

related to the shadowing section explained previously.  When a cell receives less 

light, it normally produces an equivalent voltage but lower current.  Conversely, 

when light intensity increases, the cell normally produces more current at an 

equivalent voltage.  As described in the section on shadowing, the thickness of 

each layer may be adjusted to produce more or less power and allow more or 

less light to pass through to other layers.  By optimally adjusting the thicknesses 
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of each junction layer, the maximum-power current for all junction layers may be 

matched in order to get the maximum power output from a multi-junction cell. 

C. GENETIC ALGORITHMS 
1. Concept and Typical Applications 
There are some optimization problems in science to which there only exist 

complex and computation-intensive solutions.  The optimal placement of 

electrical components on a circuit board or on a chip, the optimal routing of 

garbage trucks in a large city, and the discovery of optimal robot limb trajectories 

are just a few examples.  In some of these problems, there may exist a method 

to solve for a solution but it would require too much computation time to be useful 

in the application.  In other types,  no one has found a way to directly solve for an 

optimum solution without first testing every possibility and choosing the one with 

the best result.  Decomposing a problem into its parts and then combining the 

separate answers will sometimes have unpredictable results.  A classic example 

used to illustrate this situation is the traveling salesman problem.  Consider a 

traveling salesman with a sales area encompassing sixteen cities.  In order to 

make his rounds, the salesman wants to visit all sixteen cities in a single trip.  

However, since gas prices keep rising, he wants to pick the order to visit cities so 

that he will travel the shortest path possible.  For example, possible routes are 1-

2-3-4-5-6-7-8-9-10-11-12-13-14-15-16, 16-15-14-13-12-11-10-9-8-7-6-5-4-3-2-1, 

1-3-5-7-9-11-13-15-2-4-6-8-10-12-14-16, etc.  Upon analysis, the total number of 

routes is N factorial, where N is the number of cities[6].  In our example of a 16 

city traveling salesman problem, this is a hefty number. 

 16! 20,922,789,888,000routes = =  (7) 

However, this number may be cut in half since every sequence of cities 

has an exact opposite route with the same length.  While this would be nice for 

variety for the salesman, the two routes would have the exact same length.  

Therefore, the revised number of routes is only ten trillion. 

Genetic algorithms represent a class of approximation techniques based 

on modeling the processes through which organisms breed in nature.  An 
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organism contains genes composed of individual chromosomes which define all 

aspects of the organism:  hair color, skin tone, number of toes, brain size, etc.  

When the organism breeds with a member of the opposite sex (typically), the 

genes of the offspring are a mixture of the genes of the two parents.  To see how 

this improves genes over time, we must consider an entire population of 

organisms.  Based on genes, a specific organism has a better or worse chance 

of both surviving and breeding to produce an offspring.  The concept of natural 

selection is that those organisms with poor combinations of genes are less likely 

to reproduce.  By extension, the population, over time, becomes a mix of 

organisms which contain only the best genes as handed down from successful 

parents.  Those organisms which contain the bad combinations are more likely to 

die off without reproducing.  In addition, mutations occur spontaneously in nature.  

Some genetic material is randomly changed by various events.  When this 

improves an organism, the mutation is likely to remain and spread through the 

population over time.  In order to see how this process could be applied to a 

problem in science, an example of applying a genetic algorithm to solar cell 

optimization will be given. 

2. Illustrative Example: Modeling the Single Junction Solar Cell 
Drew Bates, a previous researcher at the Naval Postgraduate School, 

applied a genetic algorithm to optimize the performance of single-junction solar 

cells.  The following text will explain how the problem in question was modeled 

using the genetic algorithm.  A more detailed treatment of his process may be 

found in Ref. 7.  The first step of applying a genetic algorithm is to define the 

problem and find a way to represent the problem numerically. 

a. The Problem to be Solved 
An individual junction layer solar cell actually consists of several 

layers of material.  Within those layers, each region is made of a certain material 

with a specified thickness and doping concentration.  The genetic algorithm used 

to optimize the cell design was focused on picking the best thickness and doping 

levels for four of the layers within the cell, namely the window, emitter, base, and 

back surface field.  A sample cell layout showing these traits may be seen in 



 22

Figure 14.  Note that the bottom and top contacts as well as the cap and anti-

reflective coating are not being optimized. 

 
Figure 14.   Example of Single Junction InGaP cell [After Ref. 7] 

 
b. Numerically Representing the Problem 
One of the methods of implementing a genetic algorithm is to 

represent trait values using binary strings.  In practice, this allows the bits of an 

individual chromosome to be treated abstractly.  Bates designed a 32-bit binary 

string with which to encode the eight traits with a resolution of four bits per trait. 

 

 
Figure 15.   Encoding of traits into a 32-bit chromosome [From Ref. 7] 

 
In practice, however, the base thickness was made a dependent 

variable and the chromosome was given a dummy bit value for base thickness as 

a placeholder.  This allowed the researcher to specify an overall junction layer 
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thickness.  The base thickness was then calculated by subtracting the window, 

emitter, and back surface field thicknesses from the specified overall thickness.  

Quantization, in this case, is the process of assigning trait values to the discrete 

binary representations.  For each trait, a four-bit binary identifier gave the ability 

to specify 16 different levels for each trait.  The following scheme was used for 

quantization. 

 

 
 

Table 1.   Quantization scheme for chromosome encoding [From Ref. 7] 
 

Note:  When conducting optimization, all elements other than the 

above traits of an input deck were held constant.  It has been noted that some 

changes may be needed in input decks for modeling carrier mobility at doping 

levels as high as 1e20.  This should be addressed in further research. 

c. Executing the Algorithm 
In general a genetic algorithm follows the repetitive process 

outlined in Figure 16.  
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Figure 16.   Simplified flowchart for genetic algorithm 
 

To create the initial population, 35 random binary 32-bit strings 

were generated.  In order to compute the fitness value of each chromosome, the 

trait values were first determined by converting the binary string into real values 

as shown in the quantization table.  These values were then written into a Silvaco 

ATLASTM input deck (described in detail in Appendix A).  The Silvaco tools 

provided data on the cell’s expected IV curve and therefore the solar cell’s 

expected performance.  The maximum output power was used as the cell’s 

fitness value.  Once fitness values were determined for all 35 chromosomes, the 

algorithm evaluated whether or not its stopping criteria had been met.  In this 

case, the genetic algorithm first checked if it had been running for at least 16 

generations.  If so, it checked to see if the maximum fitness value had changed 

within the past three generations.  If the algorithm had completed 18 generations, 

the standard was reduced to a 99.9% match in maximum output power for the 

past three generations.  If the algorithm completed 20 generations, it was 

stopped  
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regardless of fitness value trends.  If none of these stopping criteria had been 

met, the algorithm then proceeded to breed the chromosomes for the next 

generation. 

d. Breeding a New Generation 
In this implementation, breeding took on the process depicted in 

Figure 17.  As will be discussed later, there are many variations in the details of 

this process. 

 
 

Figure 17.   Breeding Process Flowchart 
 

The breeding proceeded according to the following process.  First, 

using an elitist strategy, the best performing chromosome was carried over to the 
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next generation.  Next, a roulette wheel style selection mechanism was 

employed.  Implementation of the roulette wheel was based on two ordered lists.  

The first list was simply a sorted list of fitness values from highest to lowest.  The 

second list consisted of a sum of a given fitness value and those below it on the 

list.  A random number was then generated between zero and the highest 

number in the second list.  The first value in the second list equal to or higher 

than the random number indicated a parent to be used in breeding.  This process 

was carried out 34 times in order to generate 17 pairs of parents. 

 

 
Figure 18.   Roulette wheel list generation (a) and selection mechanism (b) [From 

Ref. 7] 
 

Once parents were chosen, the actual breeding of child 

chromosomes was handled through a dual-point crossover routine.  To imagine 

the crossover routine, consider the two parent chromosomes laying side by side.  

In dual-point crossover, two points are chosen along the length of the 

chromosome.  Between those two points, the genetic material of the parents is 

switched when creating the child chromosome as depicted in Figure 19. 
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Figure 19.   Dual-Point Crossover [From Ref. 7] 
 

The dual point crossover was implemented with 90% probability.  

This means that in 10% of the operations, the children were simply left as the 

parent chromosomes.  These methods produced the remaining 34 chromosomes 

for the next generation.   

Finally, a one percent probability of a single bit-flip mutation was 

introduced to allow the algorithm to continually search new areas of the solution 

space.   

 

 
 

Figure 20.   Mutation of Bit Values in a Chromosome [From Ref. 7] 
 

All genetic algorithm procedures, input deck generation, and result 

analyses were conducted using MATLABTM-based output power analysis tools 

developed by previous researchers.  Results of this process were favorable and 
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showed, on average, a seven to eight percent improvement in maximum power 

compared to previous research [Ref. 7]. 

3. Nuances of Genetic Algorithms 
As mentioned previously, genetic algorithms can be implemented in many 

ways.  Holistically, the design of a genetic algorithm is a balance between 

focusing the algorithm on the solution space and giving it enough randomness to 

continually search new spaces.  If too much structure is given, the algorithm is 

more likely to get trapped within a local maximum of the solution space.  If too 

much randomness is used, good genetic material such as an ideal trait value 

may take longer to take hold in a population or may be entirely wiped out through 

mutation.  In this section, a few of the genetic algorithm design considerations 

relevant to this thesis will be discussed.  A very thorough coverage of genetic 

algorithm design approaches and applications may be found in Ref. 8. 

a. Population Size 
The small population size used for this implementation was 

primarily a product of the limited computation power available.  However, the 

population did allow the researcher to ensure that every trait value was 

represented in at least one chromosome of the initial population [Ref. 7].  In 

addition, the population size of 30 was specifically mentioned in the text of Ref. 8  

along with recommended crossover and mutation settings. 

b. Selection Strategy 
Roulette wheel selection is one of the most common methods used 

in genetic algorithm implementations.  Ref. 8 categorizes selection strategies 

according to bias, spread, and efficiency.  Bias refers to the probability of 

selection of a specific individual chromosome.  Spread refers to how many times 

an individual may be simulated.  A large spread means the majority of the 

solution space is equally likely to be selected.  A small spread means the 

algorithm is more likely to in-breed.  The efficiency of a particular selection 

strategy is defined by how efficiently it can be implemented.  While selection 

does take computer time, this time is orders of magnitude less than the amount 

of time required for simulations.  Therefore, efficiency of the selection strategy is 
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inconsequential in this work.  Roulette wheel is classified as zero bias and 

potentially unlimited spread.  Stochastic uniform sampling is another method with 

zero bias but low spread.  Another method chooses parents based on their 

absolute ranking regardless of the actual fitness values.  This is known as a 

ranking scheme and helps prevent premature convergence of a population [Ref. 

8]. 

c. Crossover Settings 
As mentioned, this approach uses a dual-point crossover strategy.  

This type of a crossover strategy can be implemented with a single point 

crossover up to one less crossover point than the population size.  The latter 

would end up switching every other bit during crossover.  Several papers have 

debated the merit of different approaches, but dual point seems to be effective in 

most applications.  Another method, known as uniform crossover, creates a 

randomly generated mask which is the same length as a chromosome.  A zero at 

any point of the mask denotes no crossover while any one signifies that a bit 

crossover occurs. 

 

 
 

Figure 21.   Example of uniform crossover [From Ref. 8] 
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The selection of a crossover scheme goes back to the holistic view 

of how much randomness versus how much structure is best for a particular 

application.  In the case of crossover, most schemes only allow crossover to 

occur at the boundaries between traits.  In this way, the basic building blocks of 

the chromosome are preserved.  Genetic algorithm theory predicts that the 

development and perseverance over time of good genetic material building 

blocks is often credited with a large part of why the algorithm works.  However, in 

some applications, a greater degree of randomness is desirable to prevent the 

premature convergence of a population.  Uniform crossover, as described, 

randomly generates a crossover mask which may or may not violate trait 

boundaries.  While there are other crossover schemes, a few have been 

presented along with the overall tradeoff being managed.  For every research 

paper which showed conclusive results that one crossover method worked 

better, there is another which states the exact opposite.  The consensus is that 

there probably is an optimum approach to a specific application.  However, what 

works in solar cell optimization might not be the best method for routing garbage 

trucks in New York City or the placement of electrical components on a circuit 

board. 

d. Probability of Mutation 
Similar to crossover methods, the schemes for choosing crossover 

and mutation probability rates is highly controversial.  For mutation, the tradeoff 

is more simple to understand.  At 0% mutation, there will never be any random 

perturbations introduced into a population.  Convergence of the solution set will 

likely be a one way process and it will be unlikely to escape a local maximum.  At 

100% mutation, the genetic algorithm simply becomes a random search of the 

solution space.  Therefore, in any application, it is important to observe initial 

results in order to determine if premature convergence is a problem and then 

adjust the mutation rate.  In many efforts, a linear adjustment is made as the 

algorithm progresses.  In this approach, the mutation rate is slowly increased in 

subsequent generations while the crossover rate is decreased.  Building on 

these, there are numerous schemes of how to adjust the rates as the algorithm 
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progresses.  Once again, this points back to the original holistic view of trading 

between randomness and structure within a genetic algorithm implementation. 

D. MODELLING CELLS IN ATLASTM SILVACO 
1. Origins of the Cell Model 
Until recently, the solar cell industry’s only available method of 

experimentation was to fabricate and then test solar cells.  The physical 

processes involved in cell fabrication make this approach cost prohibitive when 

many permutations on the design must be tried.  However, in the past five years, 

researchers at the Naval Postgraduate School have been able to accurately 

model single and multi-junction solar cells within the Silvaco TCAD tool suite1.  

The Silvaco tools create a physical-based model of a semiconductor device 

within a two or three dimensional space.  The physical model includes sizes, 

thicknesses, doping levels, material properties, etc., of a device.  Next, a mesh 

structure is created within the device to define where analysis is to be conducted.  

Finally, operating parameters are established and measurements are made by 

solving a set of differential equations at each mesh intersection.  The user can 

define a device using a standard ASCII text file in a format called an input deck.  

The TCAD tool suite’s DeckBuildTM application may be used to edit, debug, and 

run input decks.  It can also run in a non-graphical batch mode to simulate 

numerous input decks or as remote sessions.  DeckBuildTM parses the input file, 

builds the physical model of the device, sets parameters, and then calls on the 

TCAD suite’s individual tools as needed to conduct the simulations.  In order to 

best illustrate the flexibility allowed within the TCAD tool suite, Appendix A 

contains an entire input deck and explains the various settings.  In addition, Ref. 

9 is the software’s user manual. 

 

 

                                            
 

1 The Silvaco TCAD tool suite allows physically based models of semiconductor devices.  It 
is used in modeling a wide range of electronic devices.  To learn more, visit Silvaco’s web site at 
http://silvaco.com/products/TCAD.html last accessed September 2006 
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2. Previous NPS Research Progress 
a. Michalopoulos 
Panayiotis Michalopoulos was the first researcher at NPS to identify 

the Silvaco TCAD suite as a potential method of modeling solar cells.  He 

developed the first single junction cell models and validated them against 

published results.  Further, he continued by modeling well-documented dual 

junction cells and validating them against published results.  When constructing 

the cells, Michalopoulos was able to model and test a tunnel junction between 

layers of the cell.  Finally, he modeled and optimized a triple junction solar cell 

and validated the results against published performance data.  However, in the 

triple junction cell, the publication used did not give the actual physical structure 

used in cell construction.  Michalopoulos was able to predict cell construction 

based on lessons learned in previous simulations and his performance data 

closely matched the published results.  In building the original model, 

Michalopoulos conducted extensive analysis of publications to best define the 

material properties of the relatively exotic materials used in single and multi-

junction cells.  The results of his research are published in his master’s thesis 

[Ref. 10]. 

b. Green 
Max Green, another NPS researcher, conducted an extensive 

validation process on Michalopoulos’ work while re-creating the Silvaco cell 

models.  Although the majority of the cell configurations were validated, the 

tunnel junction model was found to be incorrect.  Michalopoulos’ tunnel-junction 

model was not set up correctly and did not have the correct current-voltage 

characteristic curve.  When the construction was corrected, the model did not 

function correctly.  No researchers have since been able to get the tunnel 

junction working correctly.  A thorough discussion of this challenge is given in 

Chapter VII Part D of his thesis.  Green continued his validation work by 

mechanically stacking the cells.  His final step was to construct a four-junction  
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cell based on adding an InGaNAs layer.  The cell was modeled and it’s 

theoretical output levels were computed.  The results of his research are 

published in his master’s thesis [11]. 

c. Bates 
Drew Bates, yet another NPS researcher, pursued two major 

research thrusts: (i) cell optimization and (ii) using different light spectra.  He 

started by designing a genetic algorithm for use in optimizing each junction layer.  

After realizing improved performance in each layer at various thicknesses, Bates 

developed an iterative current-matching technique for adjusting the thickness of 

each junction layer in order to maximize overall cell output.  The iterative current 

matching technique improved simulated cell performance.  Bates final work was 

to optimize the design of a triple-junction cell under the Martian light spectrum.  

As predicted, a cell optimized for Earth orbit is not optimally tuned for 

performance on the Martian surface.  By adjusting thickness and doping levels 

from an Earth-optimized cell, better performance can be obtained under Martian 

conditions.  The results of his research are published in his master’s thesis [Ref. 

7]. 

d. Crespin 
A fourth researcher at NPS to work in this research area was Aaron 

Crespin.  One of the primary drivers in spacecraft solar array design is the loss in 

array efficiency caused by radiation effects.  Crespin successfully modeled 

radiation effects in a single-junction Gallium-Arsenide cell using Silvaco 

ATLASTM.  The cell’s degraded performance with the radiation effects closely 

matched published research showing results from experimenting with real cells.  

Extension of Crespin’s work could potentially lead to optimized cell designs which 

degrade gracefully over a spacecraft’s life despite the effects of the cumulative 

dose of radiation exposure.  The results of his research are published in his 

master’s thesis [Ref. 12]. 
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III. PREVIOUS OPTIMIZATION APPROACHES AND THE CASE 
FOR DISTRIBUTED COMPUTING 

A. DREW BATES’ GENETIC ALGORITHM AND ITERATIVE CURRENT 
MATCHING APPROACH 
Drew Bates approach to optimizing single-junction solar cells is the use of 

a genetic algorithm as outlined in Chapter II.  His results found optimal 

configurations of the individual junction layers for several cell types and 

thicknesses. 

The method used for assessing the quad-junction cell was to subject the 

cell to an iterative current-matching.  The routine begins with a multi-junction cell 

with thickness values slightly larger than the expected optimum values.  The 

routine then evaluates the current-voltage curves of each junction layer by 

comparing the short-circuit currents.  Short-circuit current was initially used as an 

approximation of a junction layer’s maximum power current in order to save 

computation time.  Junction layers were initially paired up with the top two and 

bottom two layers together.  In order to match current within the pairs, parametric 

analysis of thicknesses for the upper and lower half of the pair were made.  Once 

the upper and lower pairs’ current converged within 99.6%, the second and third 

layer currents were compared for one iteration, followed by adjusting the 

thickness adjusted to match currents for the two pairs.  This process was 

repeated until all four junction layers were within 99.6%.  At this point, the routine 

switches mode, from matching short-circuit current to matching max power 

current.  The routine ends once all four max power currents are matched.  

Pseudocode for this routine is listed below.  Note that in this pseudocode the 

symbol <> denotes the lack of convergence within 99.6%. 

 
procedure iterative_current_match 
 var 
  Isc1, Isc2, Isc3, Isc4, Imp1,Imp2,Imp3,Imp4   : double 
  thickness1,thickness2,thickness3,thickness4 : double 
 begin 
  Initialize thickness1,thickness2,thickness3,thickness4 to values well  
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   above their expected optimal thicknesses 
   
  while Isc1<>Isc2<>Isc3<>Isc4 

   {in other words, while the currents have not converged} 
   Isc1, Isc2, Isc3, Isc4=simulate cell(thickness1,thickness2,  
    thickness3,thickness4) 
   while Isc1<>Isc2 or Isc3<>Isc4 

   {This part of the loop adjust thicknesses between pairings of  
   the upper two and lower two layers} 
    if Isc1>Isc2 
     Reduce thickness1 
    end; 
    if Isc1<Isc2 
     Increase thickness1 
    end; 
    if Isc3>Isc4 
     Reduce thickness3 
    end; 
    if Isc3<Isc4 
     Increase thickness3 
    end; 
    Isc1, Isc2, Isc3, Isc4=simulate cell(thickness1,thickness2,  
    thickness3,thickness4) 
   end; 
   {Once pairings have been current-matched, now adjust  
    thickness to match the two pairings} 
   if Isc2>Isc3 
    Reduce thickness2 
   end; 
   if Isc2<Isc3 
    Increase thickness2 
   end; 
  end’ 
  while Imp1<>Imp2<>Imp3<>Imp4 
   Same as above loop but comparing max power current vice  
    short circuit current 
  end; 
 end; 

 

The current matching routine successfully increased the quad-junction 

cell’s power output by approximately seven percent.  Figure 22 illustrates the 

convergence of individual junction current levels as the routine progressed over 

100 iterations. 
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Figure 22.   Results of Bates’ iterative current matching routine for four-junction 

cell [From Ref. 7] 
 
 
 
B. THE CASE FOR DISTRIBUTED COMPUTING 

1. Size of the Solution Space 
The genetic algorithm approach used by Drew Bates on each junction 

layer creates a large space in which to search for a solution.  Each cell 

configuration or chromosome is represented by a 28-bit binary number.  Each bit 

has two possible values, zero or one.  The total size of the solution space turns 

out to be 228 [Ref. 13]. 

Bates used a single Pentium IV 2.52 GHz computer with 1GB of RAM to 

conduct simulations.  Using this platform, he found that it was possible to run a 

single simulation every 2 minutes of computer time.  Using this method, an 

exhaustive search of the solution space would take an unacceptably long time, 

roughly 13,003 years. 

In addition, sometimes the ATLASTM simulations would produce corrupted 

data causing the system to halt; restarting the simulation required manual 

intervention.  Bates genetic algorithm implementation had a population size of 35 

and was halted if it did not converge within 20 generations.  Assuming each 
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member of each generation was unique, this would only cover 700 of the 

possible 268,435,456 solutions.  In addition, the genetic algorithm re-introduces 

chromosomes by breeding and mutation.  Bates observed that each optimization 

run only tested approximately 300 unique chromosomes and would take 

approximately 24 hours of computation time without runtime errors. 

However, testing such a small portion of the solution space begs the 

question of whether or not the algorithm converged in a local maximum.  Most 

research papers on genetic algorithms will show results up to 500 generations 

depending on the complexity of the problem.  In order to better search the 

solution space, more computation power was needed. 

Two possible approaches to speeding up this process are to purchase or 

build a faster machine to do the work or to distribute the computational tasks 

among many computers.  The latter approach was chosen as described below. 

2. Distributed Computing Approach 
By Flynn’s taxonomy, computing algorithms may be classified as Single 

Instruction Single Data (SISD), Multiple Instruction Single Data, Single Instruction 

Multiple Data, and Multiple Instruction Multiple Data [Ref. 14].  A commonly used 

derivative of this is Single Program Multiple Data (SPMD).  When comparing 

algorithms using these distinctions, an engineer gains insight into the best way to 

implement a distributed computing application.  As an example, a SISD is 

represented by a desktop personal computer running applications in series.  In 

the case of simulations of solar cells, SPMD is an appropriate model to apply 

since the majority of computation time used by Silvaco ATLASTM is for simulating 

the solar cell design.  At this time, the software is not designed to split a single 

simulation over multiple processors.  The multiple data aspect describes the 

numerous cell designs to be simulated.  Accordingly, a simple and ideally 

distributed computing algorithm is to centrally manage the assignment of 

simulations to a large number of separate computers, which could in turn run 

simulations locally and report back their results.   
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3. Choosing a Distributed Computing Platform 
Next, a search was initiated to find what types of distributed computing 

software were available to support this approach.  While numerous approaches 

were found on the web, many of them required the use of a programming 

language unique to the platform.  Consequently, these were not considered and 

the focus of the search was placed on systems which allowed the use of fairly 

standard programming languages with minor modifications to allow the 

coordination of numerous machines.  Four primary systems were considered and 

each is briefly described with a comparison chart following the descriptions.   

The Berkeley Open Infrastructure for Network Computing (BOINC) is an 

open source system designed for distributing computing work across the internet 

[Ref. 15].  It was based on the Search for Extra Terrestrial Intelligence (SETI) at 

home project which distributes radio telescope recordings to volunteer computers 

worldwide  which then conduct signal analysis on the recorded data and report 

back their results [Ref. 16].  By downloading a simple client, a user may define 

the amount of computer resources which may be used (idle time only, memory, 

hard drive, cpu percentage, etc) and enter the web link for projects they wish to 

participate in.  The client then logs into the projects, downloads any needed 

software and data files, and then commences work according to the user 

preferences.  Users may also participate in several projects and define the 

amount of computer resources devoted to each project.  The project sponsor 

uses a different version of the BOINC software which tracks users, data files, 

software versions, etc.  This server software is not simple to install but there is 

ample help from UC Berkeley and other established projects available.  The 

limiting factor, however, is that the solar cell simulations require use of the 

proprietary Silvaco TCAD suite of software.  Freely distributing this to volunteers 

across the internet would be illegal. 

The next two systems considered were the Parallel Virtual Machine (PVM) 

[Ref. 17] and Message Passing Interface (MPI) [Ref. 18] packages available for 

Unix/Linux and Windows platforms.  While they differ in implementation, they 
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both offer a similar approach to a distributed computing solution.  When installed, 

the PVM or MPI software acts as a buffer between the distributed programs and 

the operating system on each machine being used.  The packages handle the 

housekeeping functions necessary to coordinate numerous machines.  These 

functions include the passing of data (messages), booting and shutting down  

processes on a number of computers, process monitoring and control, etc.  The 

programmer may write in C/C++ or Fortran and compile the code using a slightly 

modified compiler which includes the commands for accessing all the distributed 

computing functions.  PVM’s tutorial’s were last updated in 1997.  The LAM MPI 

web site was current with a full, proctored, free tutorial which was updated in 

2006.  Both LAM-MPI and PVM are available as installed features within Redhat 

Enterprise Linux (RHEL) and Fedora (the free version of RHEL). 

MATLABTM has recently developed a distributed computing toolbox which 

allows some of the functionality needed.  However, at the time this research 

began, the toolbox had been recently released and was still in heavy 

development.  The other downside is that MATLABTM is a commercial product 

and has a significant cost.  Depending on home many clients are to be run, this 

can range from $2,000-$5,000 [Ref. 19].  The preferable approach is to have 

processes run in the background.  Their second release of the toolbox appears to 

be more fully featured and allows processes to run in the background.  The 

toolbox is based on the MPI packages adapted for use within MATLABTM. 

 
 Maturity Learnability Failure 

Tolerance
Programming 

Language 
Cost 

BOINC 2 2 3 Any Free 
LAM 5 5 4 C++/Fortran Free 
PVM 5 4 4 C++/Fortran Free 
MATLABTM 2 5 1 MATLABTM $2,000- 

$5,000  
 

Table 2.   Comparison of Distributed Computing Approaches 
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While weighing this decision, two additional factors were introduced.  First, 

a new lab was built with 18 dual processor machines with ample memory running 

on Linux.  The lab was built for the Oceanography department and was not yet 

being utilized.  Second, the school was becoming increasingly concerned about 

energy conservation.  This meant that the majority of lab machines were 

remotely shut down at night.  Since the majority of Linux and Unix users work 

remotely, the Linux and Unix machines are generally exempt from this automatic 

shutdown.  With the pre-installed packages with free compilers and development 

software available under Linux, the lab was the best candidate.  LAM-MPI was 

chosen over PVM because of the more recent training products and its continued 

development and support on the Web. 
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IV. RESULT VALIDATION 

A. DISTRIBUTED COMPUTING IMPLEMENTATION 
1. Hardware Setup 
The platform used for running the optimization application consisted of a 

network of 18 dual-Xeon processors, each with 1GB RAM.  In addition, two 

Pentium III desktop computers handled administrative functions:  One was used 

as a file server for all data and working directories, while the other was used as a 

distributed-system monitor [Ref. 20]. 

 

 
Figure 23.   Original Lab Setup 

 
 

2. Software Setup 
a. Operating Systems 
All lab machines were configured with Red Had Enterprise Edition 

Linux (RHEL) and received occasional upgrades from IT support personnel.  The 

two desktops used for file sharing and software development were set up with 
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Fedora Core 3 (FC3), an open source operating system which functions as a 

testbed for development for RHEL.  Typically Fedora Core releases test newer 

features and work out the bugs before software is incorporated into the more 

stable RHEL operating system.  Since the Fedora Core series has many more 

“bleeding edge” packages, it provided a more feature rich and easy to support 

system for software development.  The core packages were similar enough to 

interoperate without problems.  However, the LAM MPI packages for FC3 had 

developed up to version 7.1.1-7 while RHEL only had version 6.5.9-1.  The two 

versions were not compatible.  When software was compiled on the development 

desktop, it would not execute on the computing platform.  An older package was 

located for the development desktop and reverted to version 6.5.9-3.  While a 

slightly different version, they proved compatible in execution. 

b. Distributed Computing Scheme 
The distributed-system monitor and hill-climbing optimization 

application were written in the C programming language.  C’s primary 

advantages were familiarity to the author, numerous online tutorials and 

references, and the ease of low-level process control.  The software was 

composed of a few thousand source lines of code.  Some highlights of the code 

follow.  A more detailed treatment is given in Appendix C.   

The master node of the distributed computing system was designed 

to take a few inputs.  The first was a file giving general simulation run 

information.  This included the location of input files, type of cell to be simulated, 

location to store result files, how many times to retry failed simulations, how 

much time to allow a simulation before aborting it, and other housekeeping 

parameters.  The second input was a set of three files which define the 

chromosomes to be simulated, those which have already been successfully 

simulated, and those which encountered simulation errors.  Bates’ research 

identified unique chromosomes by their decimal number.  These three files were 

simply ASCII encoded lists of chromosomes, one per line.  This system allowed a 

simulation to be resumed in case of system software error.  The master node’s 
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job was to read the input files, build the ATLASTM input decks, assign 

chromosomes to clients for simulation, track overall progress, and consolidate 

the results upon completion. 

The client node of the distributed computing system had two 

primary inputs.  The first input was housekeeping data similar to the master 

node.  The second input was the client’s assignment from the master node.  The 

client took advantage of the C language’s facilities for low level process control.  

The client receives an assignment and then spawns a new child process to enact 

the simulation by running ATLASTM on the assigned file.  The original parent 

process periodically checks the operating system’s record of the simulation 

process status to ensure it is still executing correctly.  If the simulation went past 

a specified time threshold, the parent process would kill the simulation and send 

a failure notice back to the master node.  If the simulation completed 

successfully, the client would extract the data from the ATLASTM output file, 

check it for validity, and save it in a more compact form for further analysis. 

B. SINGLE-JUNCTION RESULT VALIDATION 
1. Coarse Sampling and Gradient Ascent Method and Results 
The first concern with Bates’ data was that it became trapped in a local 

maximum and failed to adequately search the solution space.   Through the use 

of distributed computing, a coarse sampling and gradient ascent method was first 

used.  The strategy implemented in the hill climbing method was to first conduct 

a coarse sampling of the solution space and then execute a gradient ascent 

method on the best candidates found in this process.  The following pseudocode 

outlines this process. 

procedure coarse_sample_and_gradient 
 var 
  list_of_chromosomes : array of 2187 int 
  results ,gradient_resutls : array of 2187 int 
  gradient_candidates : array of 5 int 
  candidate,new_candidate : int 
  loopcounter   : int 
 begin 
  list_of_chromosomes=permutations(all trait values 1,8,15) 
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  results=conduct_simulations(list_of_chromosomes) 
  gradient_candidates=pick_best_five(results) 
  for loopcounter=1 to 5 
   candidate=gradient_candidate(loopcounter) 
   while candidate≠new_candidate  
    list_of_chromosomes=permutations(all trait values of  
     candidate as well as plus and minus 1) 
    gradient_results=conduct_simulations(list  
     _of_chromosomes) 
    new_candidate=maximum_of(gradient_results) 
    if new_candidate>candidate 
     candidate=new_candidate 
     new_candidate=0; 
    end; 
   {if no improvement was found, the gradient loop exits, if an  
    improvement was found, the gradient process repeats  
    for the new candidate} 
   end; 
   store_newfound_local_optimum 
  {algorithm would now loop and conduct the hill climbing on the next  
   candidate} 
  end; 
 end; 

The first consideration was how coarse of a sampling of the solution space 

to make.  The initial assumption was that an optimum position within the 15 trait 

positions cannot be predicted.  On one end of the spectrum is testing only one 

value of each trait and the other end of the spectrum is testing all combinations of 

every value of every trait.  The following table shows how increasing the level of 

granularity results in an exponential growth in computation time.  The following 

table shows the computation time required to achieve varying degrees of 

granularity in the coarse sampling.  The table assumes two minutes per 

simulation and that the distributed computing system will consistently employ all 

processors with three simulations running on each simultaneously.  However, our 

ability to run simulations was limited by 50 licenses of the Silvaco software and 

that not all processors were always available.  In addition, some re-tooling was 

required in order to change between cell types.  Within a single cell type, a hill 

climbing approach was applied to the top 5 results of the coarse sampling and 

each hill climbing application would normally run for five iterations or more.   
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y d h m y d h m
20 7 1 20 0 0 0 40 0 0 0 0.741
20 7 2 2560 0 3 13 20 0 0 1 34.81
20 7 3 43740 0 60 18 0 0 1 3 0
20 7 4 327680 1 90 2 40 0 8 10 16.3
20 7 5 1562500 5 345 3 20 0 40 4 30.37
20 7 6 5598720 21 111 0 0 0 144 0 0
20 7 7 16470860 62 246 4 40 1 58 15 11.85
20 7 8 41943040 159 219 5 20 2 348 18 45.93
20 7 9 95659380 364 0 6 0 6 270 9 0
20 7 10 200000000 761 12 18 40 14 34 0 47.41
20 7 11 389743420 1483 15 7 20 27 169 6 21.48
20 7 12 716636160 2726 338 0 0 50 182 0 0
20 7 13 1254970340 4775 139 8 40 88 158 1 2.963
20 7 14 2108270080 8022 122 21 20 148 205 1 17.04
20 7 15 3417187500 13002 363 18 0 240 290 15 0

Distributed Computing 
Computation TimeCell 

Types
Values per 

trait
Total 

Permutations
Traits 

per cell

Single Computer 
Computation Time

 
 
Table 3.   Computation Time required for varying granularity of coarse searches 

of the solution space 
 

For time’s sake, the three-values-per-trait approach was used.  In order to 

do this, trait values zero, eight, and 15 were used for each trait.  This was chosen 

to help test if the quantization range applied to the trait values was correct and to 

give the widest possible solution space.  Upon completion, the results shown in 

Table 4 were obtained.  In the table, the optimum found by Bates is listed 

followed by the data from the best result using the methods outlined above.  

Since Bates results were obtained under Windows-based Silvaco software, the 

best results obtained under Linux were converted into Windows format and 

simulated in the same manner used by Bates for consistency.  The power values 

in the tables were all generated under Windows. 

 
 
 
 
 
 
 

Table 4.   Coarse Sampling and Gradient Ascent Data for InGaP Cells 
 

Cell Type Thickness Bates Hill Climb % diff
InGaP 0.25 175707 0.018398885 0.018224933 -0.945%
InGaP 0.50 99239 0.023158565 0.021891432 -5.472%
InGaP 0.75 46691 0.025264187 0.024779541 -1.918%

Configuration Power(W/cm 2̂)Total 
Simulated

Coarse Sampling and Gradient Data for InGaP
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The disparity in total number of chromosomes tested has to do with the 

software development process.  The first configurations tested ran significantly 

more times than later configurations because the distributed computing software 

was still under development.  A feature implemented early on was checkpointing 

to aid in recovery from system or application failure.  Other cell types tested 

showed similar results to Table 4.  In almost every cell type, the gradient ascent 

process for the five best candidates led to five separate local maxima.  In 

addition, the local maxima were all of lower output power than the results 

obtained by Bates using the genetic algorithm.  This indicates that the solution 

space is likely riddled with local maxima and that the traits do not all have a linear 

effect on cell output power.   

2. Distributed GA Method and Results 
Upon completion of the hill climbing method, the next logical step was to 

extend Bates’ work by using the genetic algorithm with the aid of the distributed 

computing system.  In order to simplify the GA portion of the programming, the 

MATLABTM Genetic Algorithm and Direct Search toolbox was used.  The toolbox 

allows the rapid re-configuration of population, selection, crossover, mutation, 

and most genetic algorithm properties without manual intervention and re-coding 

of an application.  Originally, the settings specified in Bates’ thesis were used.  

His implementation used a uniform (random) initial population of 35, four-bit per 

trait representation, roulette wheel style selection, dual-point crossover, and a 

single chromosome elitist strategy.  While the majority of these settings are 

implemented in the MATLABTM toolbox, there are some minor differences.  For a 

more detailed treatment, see Appendix C. 

For each cell configuration, the MATLABTM toolbox was set up to run for 

50 generations before stopping to report results.  In order to take advantage of 

the distributed computing architecture already built, a MATLABTM routine was 

written to store cell configuration data in a file and then send messages (via a 

single one or zero in a file) to the distributed computing master node.  When all 

simulations were complete, the distributed system monitor would compile the 
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results and then similarly signal MATLABTM that the results were ready.  

MATLABTM would import the data, breed the next generation, and continue the 

process.  In order to introduce MATLABTM to the lab, a separate PC was used. 

Distributed System
Monitor

Dual Xeon Dual Xeon Dual Xeon Dual Xeon

File Server

Dual Xeon Dual Xeon Dual Xeon Dual Xeon

18 total Dual Xeon “clients”

PC Running MatLab

 
Figure 24.   Revised distributed computing platform 

 
Early iterations of this process showed that the population would quickly 

converge with little mutation by generation 15 and would show little improvement 

or change from that point through generation 50.  In order to better search the 

solution space, the mutation rate was increased to ten percent.  In most cases, 

this type of tuning resulted in small incremental gains throughout the 50 

generation optimization.  This 50 generation approach with the increased 

mutation rate was used on all 14 cell configurations. 
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Cell Type Thickness 20 gen 50 gen % diff 
InGaP 0.25 0.018398885 0.018401961 0.017%
InGaP 0.50 0.023158565 0.022275164 -3.815%
InGaP 0.75 0.025264187 0.025273847 0.038%
GaAs 0.50 0.024628965 0.024722282 0.379%
GaAs 1.00 0.028179029 0.028189460 0.037%
GaAs 1.50 0.029342492 0.029344780 0.008%
GaAs 3.00 0.030039575 0.030073571 0.113%
GaAs 5.00 0.029878681 0.029982369 0.347%
InGaNAs 1.03 0.018074821 0.018174204 0.550%
InGaNAs 1.55 0.018531643 0.018581991 0.272%
InGaNAs 2.06 0.018633871 0.018668836 0.188%
InGaNAs 4.00 0.018461029 0.018497504 0.198%
InGaNAs 6.00 0.018428607 0.018575130 0.795%

 
Table 5.   Extended Genetic Algorithm Results through 50 Generations with 

Increased Mutation Rate 
 
 
C. MULTI-JUNCTION CELL APPROACHES 

1. GA Real-Values Method and Results 
Adapting distributed computing to the optimization of the combined quad-

junction solar cell is a more complex problem than the GA for single-junction 

cells.  Bates used the genetic algorithm on each of the individual junction layers 

and then conducted an iterative current-matching routine on the combined cell.  

Results of the current-matching routine were then used to choose the next 

thickness of individual junction layers to optimize.  The first question which 

comes to mind is why the genetic algorithm was not applied to the entire cell.  

While time may have been a limiting factor, the optimization process itself 

combined with the current multi-junction cell model is a limiting factor.  In the 

modeling of the genetic algorithm on each single-junction, it was assumed that 

the thickness values of individual layers in a junction would fall within certain 

overall thickness ranges.  Accordingly, the quantization process assigned 

thickness values based on these percentages to a fixed binary mapping.  

Applying this type of process to an overall multi-junction cell would be limiting.  In 

addition, the programming of such an approach would be quite tedious.   
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The MATLABTM GADS toolbox has the ability to represent chromosomes 

and traits as bits or as real valued numbers.  If binary is used, the user must 

provide their own functions for decoding and encoding the chromosomes for use 

in the fitness function.  Using the MATLABTM real number feature allows the 

numbers to be directly applied.  In addition, the user may specify bounds for real 

valued numbers.  This accomplishes the bounding used in Bates’ quantization 

without the artificially constraining bit increments to values; the toolbox also 

allowed for a much simpler programming approach. 

The final experiment of this thesis was to attempt such an approach.  

Since the distributed computing architecture was designed to take a file listing 

chromosome numbers as its argument, significant re-tooling was required in 

order for it to take an input of real valued numbers.  This also presented a 

dilemma of how to store results.  With a 28-bit chromosome used in single 

junction cells, each chromosome could be represented by a unique number 

which was realizable in most computers using an unsigned integer.  When using 

real values, the solution space is infinite.  Consequently, individual chromosomes 

were identified only by generation and a sequential list of numbers within that 

generation.   

Using a random initial population, the simulations seemed to all get an 

identical power output value.  When the trait data from Bates’ previously 

optimized cell was introduced, it would get one (higher) output value and the 

remainder of the chromosomes would have an identical (lower) output value.  

The reason for this is not certain, but there are a few explanations to consider.   

2. Possible Explanations for the Results 
The first is that the comparisons being made are at a high level of detail.  

On individual junction layers, comparisons between optimal designs differ in the 

microwatt range.  Multi-junction cells of similar construction differ in the low 

milliwatt range.  It is possible that the randomly generated cell properties 

produced cells whose output power does not differ that significantly.  However, 

as successive generations mixed attributes of the optimized cell and the truly 
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random ones, no intermediate power output values were found.  This is contrary 

to expected results.  Another explanation is that error is introduced in the way the 

current-voltage curves are measured and by the way the current cell model 

mechanically stacks the cells. 

Without a tunnel junction, the method of measuring overall cell output 

power is not straightforward.  For each junction, current-voltage solution points 

are chosen based on percentages of the short-circuit current of that junction.  

The detail level of these points is significantly higher around the knee of the 

curve in order to gain a more detailed current-voltage curve for the junction.  

However, for the lower junctions of the cell, this may not correspond to the 

operating point when limited by the current of the top junction of the cell.  Once 

the current voltage curves for each junction have been obtained, a MATLABTM 

code segment titled mj_ivmaxp.m calculates a max power for the cell.  Since the 

current of all junctions is limited by the junction which produces the least current, 

the majority of layers will not be operating at their maximum power point at which 

the current cell models were designed to give the greatest amount of detail.  

Instead, the routine takes the data available and conducts linear interpolation 

between points as needed to find a junction layer’s performance at the correct 

operating current.  The lack of detail in measurement at this current level 

combined with the linear interpolation may introduce significant error and loss of 

detail.  When comparing cell performance on the levels of hundredths of a 

percent, this level of detail is important.  Figure 25 shows the four individual 

junction layer IV curves on a single plot.  The IV curves are shown and 

superimposed with the individual data points on which the curve was fitted.  In 

the case of this cell, the InGaP layer would have the limiting current.  It is notable 

that the other three curves do not have any measured points at that current level. 
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Figure 25.   Highlighted Measurement Points for Individual Junction Layers 

 
The accomplishment of a working tunnel junction model in Silvaco’s 

software could greatly benefit this optimization work.  First, the tunnel junction 

would allow the software to simply measure the total cell output when subjected 

to light without regard to the individual junction layer contributions.  This would 

reduce the complexity of evaluating the output power and allow better integration 

into a fitness function to enable genetic algorithm optimization.  Second, the 

properties of the tunnel junction itself could be optimized to give the best total 

output power for the multi-junction cell. 
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V. CONCLUSIONS 

In this thesis research, a coarse sampling/gradient ascent algorithm and 

extended genetic algorithm were used to test the validity of Bates’ optimization 

approach.  The results of applying the coarse sampling/gradient ascent algorithm 

did not yield any improved power output for cells.  The extended genetic 

algorithm runs with 50 generations and increased mutation rates consistently 

produced improved results.  Thus, the results of this experiment provide 

confirming evidence for the hypothesis that the procedure used by Bates 

produces optimal power output values better than those produced by applying 

the coarse sampling/gradient ascent method and at a fraction of the computation 

time.  However, Bates’ GA settings were found to be incorrectly tuned for the 

extended GA runs.  With increased mutation rate and extending to 50 

generations, incremental improvement in cell output power was obtained for 

almost every cell configuration but with diminishing returns on computational time 

and resources. 

The entire multi-junction solar cell was modeled using a real-valued GA 

implementation.  The results from exercising the model were inconclusive due to 

identical power values derived from different cell configurations; the root cause 

needs to be investigated.  One step that may help in the investigation is to 

develop a working model of the tunnel junction in Silvaco ATLASTM, allowing for 

the direct measurement of multi-junction cell output without the need to either 

conduct interpolation with the attendant problem of introducing approximation 

errors.  A more computation-intensive method would be to run the iterative 

current matching routine on a multi-junction cell while using a 50 or more 

generation genetic algorithm to optimize individual junction performance at each 

target thickness level. 

The developers and maintainers of LAM MPI have pooled their efforts with 

other MPI projects to create a new distributed processing environment called 

Open MPI.  Open MPI combines the best features of the various MPI 
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implementations.  Adaptation of the distributed computing code used in this 

thesis to this new system would likely not be that difficult.  The benefit of doing so 

would be to have a more robust system on which to run experiments.  Another 

method of distributing the work would be to develop the experimental apparatus 

in the new MATLABTM Distributed Computing Engine and Toolbox, leveraging its 

ease of use, pre-built functions and tutorials, and compatibility with Windows. 

Some additional avenues for further research are reviewing material 

property parameters and tuning the model for working under realistic operational 

parameters for space.  Michalopoulos and Green each conducted a literature 

search for experimental data on the materials used in these multi-junction solar 

cells.  Since many of the materials are fairly new in solar cells, there needs to be 

periodic reviews for updated data in order to improve the accuracy and 

performance of cell models within the Silvaco software.  The users of Silvaco 

models have the ability to change environmental constraints such as 

temperature.  Modification of the models to more closely resemble actual 

operating conditions (e.g., the more extreme thermal cycling in space over an 

extended period of time) would improve the utility of the models and provide 

more data for verification against documented power output levels. 
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APPENDIX A DETAILED REVIEW OF AN INPUT DECK 

For the sake of brevity, a single junction GaAs input deck is used for this 

illustration.    The first command tells DeckBuildTM that it will need to use the 

ATLASTM device simulator for this simulation. 
go atlas 
 

The next section does not actually build the model.  Instead, it is merely 

defining variables to be used later in the simulation.  The variables from 

windowThick down through bsfDop are the variables which were optimized as 

discussed earlier in this thesis.  In reading, note that actual values are simply 

written but any references to a previously defined variable include a dollar sign 

($) at the beginning of the referenced variable name. 
 
go atlas 
set cellWidth=500 
set capWidthpercent=8 
set divs=10 
set contThick=0.1 
set capThick=0.3 
set capDop=1e20 
 
# The following 8 lines are the variables being optimized. 
set windowThick=0.01 
set winDop=2.15e17 
set emitterThick=0.01 
set emitDop=1e16 
set baseThick=3.19467 
set baseDop=1e16 
set bsfThick=0.03533 
set bsfDop=2.15e19 
# This is the end of variables being optimized. 
 
set cellWidthDiv=$cellWidth/$divs 
set width3d=100e6/$cellWidth 
set capWidth=0.01*$capWidthpercent*$cellWidth/2 
set capWidthDiv=$capWidth/($divs/2) 
set cellWidthHalf=$cellWidth/2 
set bsfLo=0 
set bsfHi=$bsfLo-$bsfThick 
set bsfDiv=$bsfThick/$divs 
set baseLo=$bsfHi 
set baseHi=$baseLo-$baseThick 
set baseMid=$baseLo-$baseThick/2 
set baseDiv=$baseThick/$divs 
set emitterLo=$baseHi 
set emitterHi=$emitterLo-$emitterThick 
set emitterDiv=$emitterThick/$divs 
set windowLo=$emitterHi 
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set windowHi=$windowLo-$windowThick 
set windowDiv=$windowThick/$divs 
set capLo=$windowHi 
set capHi=$capLo-$capThick 
set contLo=$capHi 
set contHi=$contLo-$contThick 
set contDiv=$contThick/$divs 
set lightY=$emitterHi-5 
 
 

As described, a virtual mesh is defined throughout the volume of the 

device to be simulated.  Every intersection between mesh lines is where 

differential equations are applied to determine device performance.  Therefore, 

the specification of the mesh is tuned to the type of device being simulated.  The 

mesh is much more fine around the intersection between cell layers and in 

regions where the majority of electrical activity takes place.  Seemingly minor 

changes in the mesh can cause large changes in output values and even cause 

simulations to fail.  For readability, ATLASTM uses the # character to denote 

comments.  On some lines, a double “##” operator is used.  This is purely 

programmer discretion and done to denote section headings for readability.  As 

long as there is a single #, the DeckBuildTM application will ignore the text for the 

rest of the line. 
mesh width=$width3d 
## X-Mesh 
x.mesh loc=-$cellWidthHalf spac=$cellWidthDiv 
x.mesh loc=-$capWidth spac=$capWidthDiv 
x.mesh loc=$capWidth spac=$capWidthDiv 
x.mesh loc=$cellWidthHalf spac=$cellWidthDiv 
## Y-Mesh 
# Top contact 
y.mesh loc=$contHi spac=0 
y.mesh loc=$contLo spac=0 
# Cap 
# Window 
y.mesh loc=$windowHi spac=$windowDiv 
y.mesh loc=$windowLo spac=$windowDiv 
# Emitter 
y.mesh loc=$emitterLo spac=$emitterDiv 
# Base 
y.mesh loc=$baseMid spac=$baseDiv 
# BSF 
y.mesh loc=$bsfHi spac=$bsfDiv 
y.mesh loc=$bsfLo spac=$bsfDiv 
 

The following section begins to define the actual structure of the cell.  

Each line defines a type of material to be used as well as the position and 
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dimensions of the region within the cell.  Some comments are included to show 

how to adapt the input deck to simulate different types of cells. 
###################################### 
## CURRENTLY SET UP FOR: GaAs CELL ## 
###################################### 
## Regions [for InGaP cell, change region 1 to GaAs (v. Vacuum)  
## and remove region 8 (bogus contact)] 
## [for all others, change materials only] 
# Cap 
region num=8 material=Vacuum x.min=-$capWidth x.max=$capWidth y.min=$contHi 
y.max=$contLo 
region num=1 material=Vacuum x.min=-$capWidth x.max=$capWidth y.min=$capHi 
y.max=$capLo 
region num=2 material=Vacuum x.min=-$cellWidthHalf x.max=-$capWidth 
y.min=$contHi y.max=$capLo 
region num=3 material=Vacuum x.min=$capWidth x.max=$cellWidthHalf y.min=$contHi 
y.max=$capLo 
# Window [for Ge cell, use AlGaAs with x.comp=0.2] 
region num=4 material=InGaP x.min=-$cellWidthHalf x.max=$cellWidthHalf 
y.min=$windowHi y.max=$windowLo 
# Emitter 
region num=5 material=GaAs x.min=-$cellWidthHalf x.max=$cellWidthHalf 
y.min=$emitterHi y.max=$emitterLo 
# Base 
region num=6 material=GaAs x.min=-$cellWidthHalf x.max=$cellWidthHalf 
y.min=$baseHi y.max=$baseLo 
# BSF 
region num=7 material=InGaP x.min=-$cellWidthHalf x.max=$cellWidthHalf 
y.min=$bsfHi y.max=$bsfLo 
## Electrodes [for InGaP cell, add cathode (gold) and remove 
cathode(conductor)] 
#electrode name=cathode material=Gold x.min=-$capWidth x.max=$capWidth 
y.min=$contHi y.max=$contLo 
electrode name=cathode x.min=-$cellWidthHalf x.max=$cellWidthHalf 
y.min=$windowHi y.max=$windowHi 
electrode name=anode x.min=-$cellWidthHalf x.max=$cellWidthHalf y.min=$bsfLo 
y.max=$bsfLo 
 

The next section outlines the doping to be used for each region.  All the 

concentrations are based on variables defined at the beginning of the input deck. 
## Doping [for InGaP cell, uncomment cap doping] 
# Cap 
#doping uniform region=1 n.type conc=$capDop 
# Window 
doping uniform region=4 n.type conc=$winDop 
# Emitter 
doping uniform region=5 n.type conc=$emitDop 
# Base 
doping uniform region=6 p.type conc=$baseDop 
# BSF 
doping uniform region=7 p.type conc=$bsfDop 
 

The following section defines the actual material properties for the various 

materials used in the cell.  Silvaco has built-in libraries for a large number of 
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materials.  However, many of the materials used in solar cell fabrication are rare 

and not frequently used in the semiconductor devices commonly modeled in the 

Silvaco TCAD suite.  When the properties are not specifically defined or in the 

software library, ATLASTM will revert to default values.  When this happens, 

results are drastically affected.  The materials are explicitly defined to avoid this 

predicament.  The values used are based on previous research conducted at 

NPS [Refs. 10,11].  The numbers are partly from published literature and partly 

from calculation based on reasonable assumptions.  Although solar cell 

manufacturers probably have more detailed and tested data, it is of commercial 

value to them to protect it as proprietary information.  Therefore, it is worth 

periodic review and validation to adjust the accuracy of these numbers.  The \ 

operator seen at the end of some lines is instructs ATLASTM that the following 

line belongs with the current line but has been separated for readability 

purposes.  All files referenced need to be with the input deck in the default 

working directory for the simulation to proceed without error. 
## Material properties 
# Opaque contact [comment out for InGaP cell] 
material region=8 real.index=1.2 imag.index=1.8 
# Vacuum (for zero reflection) [change to match window material (InGaP use 
Vacuum_AlInP)] 
# [for InGaP cell, comment out region 1] 
material region=1 index.file=Vacuum_InGaP.opt 
material region=2 index.file=Vacuum_InGaP.opt 
material region=3 index.file=Vacuum_InGaP.opt 
# GaAs 
material material=GaAs EG300=1.424 PERMITTIVITY=12.9 AFFINITY=4.07 \ 
  NC300=4.7E17 NV300=9E18 INDEX.FILE=GaAs.opt COPT=7.2E-10 \ 
  AUGN=5E-30 AUGP=1E-31 
# InGaP 
material material=InGaP EG300=1.9 PERMITTIVITY=11.62 AFFINITY=4.16 \ 
  NC300=1.3E20 NV300=1.28E19 index.file=InGaP.opt COPT=1E-10 \ 
  MUN=4000 MUP=200 AUGN=3e-30 AUGP=3E-30 
# Ge 
material material=Ge EG300=0.661 PERMITTIVITY=16.2 AFFINITY=4 \ 
  NC300=1E19 NV300=5E18 index.file=Ge.opt COPT=6.41E-14 \ 
  MUN=3900 MUP=1900 AUGN=1E-30 AUGP=1E-30 
# AlGaAs 
material material=AlGaAs MUN=9000 MUP=100 INDEX.FILE=AlGaAs.opt 
# AlInP (=InAsP) 
material material=InAsP EG300=2.4 PERMITTIVITY=11.7 AFFINITY=4.2 \ 
  NC300=1.08E20 NV300=1.28E19 index.file=AlInP.opt COPT=1.2E-10 \ 
  MUN=2291 MUP=142 AUGN=9E-31 AUGP=9E-31 
# AlInGaP (=InAlAsP) 
material material=InAlAsP EG300=2.4 PERMITTIVITY=11.7 AFFINITY=4.2 \ 
  NC300=1.2E20 NV300=1.28E19 index.file=AlInP.opt COPT=1E-10 \ 
  MUN=2150 MUP=141 AUGN=3e-30 AUGP=3E-30 
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# InGaNAs 
material material=InGaNAs EG300=1.0 PERMITTIVITY=11.7 AFFINITY=4.05 \ 
  NC300=3.2e19 NV300=1.8e19 index.file=InGaNAs.opt COPT=7.2e-10 \ 
  MUN=3000 MUP=150 
# Gold 
material material=Gold real.index=1.2 imag.index=1.8 
 

The following section allows the user to specify the mathematical models 

to be applied to the various regions within the cell.  CONMOB is a concentration 

dependent electron mobility model for GaAs and Si [Ref. 9].  OPTR specifies the 

band to band recombination model and print simply instructs ATLASTM to add the 

recombination data to the log file generated at runtime [Ref. 9]. 
## Models [InGaP cell, 1; GaAs cell, 5&6; InGaNAs cell, 7] 
#models region=1 CONMOB 
models region=5 CONMOB 
models region=6 CONMOB 
#models region=7 CONMOB 
models OPTR print 
 

The Light beams section is where the user may define what light 

spectrum, intensity, and angle to shine on the solar cell.  This feature allowed 

Bates to optimize cell designs for the light spectrum in both earth orbit (AM0) and 

on Mars [Ref. 7].  The struct command following the light beams defines a 

structure file with all the physical setup information for the cell.  The commented 

out tonyplot command generates a graphical picture of the cell model. 
## Light beams 
beam num=1 x.origin=0 y.origin=$lightY angle=90 back.refl \ 
  power.file=AM0nrel.spec \ 
  wavel.start=0.12 wavel.end=2.4 wavel.num=50 
#struct outfile=SingleCell_webf.str 
#tonyplot SingleCell_webf.str 
 

The following section of the input deck begins the collection data.  The first 

section exposes the cell to light and then extracts the short circuit current from 

the data file.  Various current values along the expected current-voltage curve 

are then calculated and defined based on fractions of the short circuit current. 
solve init 
method gummel newton maxtraps=10 itlimit=25 
solve b1=0.9 
log outfile=CHR10485774.log 
solve b1=0.95 
log off 
extract init infile="CHR10485774.log" 
extract name="isc" max(i."cathode") 
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## set isc=$isc*$width3d 
set isc=$isc  
set i1=$isc/10 
set i2=$i1+$isc/10 
set i3=$i2+$isc/10 
set i4=$i3+$isc/10 
set i5=$i4+$isc/10 
set i6=$i5+$isc/20 
set i7=$i6+$isc/20 
set i8=$i7+$isc/20 
set i9=$i8+$isc/20 
set i10=$i9+$isc/20 
set i11=$i10+$isc/40 
set i12=$i11+$isc/40 
set i13=$i12+$isc/40 
set i14=$i13+$isc/40 
set i15=$i14+$isc/40 
set i16=$i15+$isc/80 
set i17=$i16+$isc/80 
set i18=$i17+$isc/80 
set i19=$i18+$isc/80 
set i20=$i19+$isc/80 
set i21=$i20+$isc/80 
set i22=$i21+$isc/80 
set i23=$i22+$isc/80 
set i24=$i23+$isc/80 
set i25=$i24+$isc/80-0.00001 
 

The final code section is where the actual IV curve measurements are 

made based on the current values defined in the previous section.  Per the 

comments, solve points are tailored to expected max power ranges for each type 

of cell in order to minimize computation time.  The final lines close out the log file 

and create a done signal for MATLABTM.  The commented tonyplot command, if 

uncommented, generates a graphical IV curve plot based on simulation results. 
log outfile=CHR10485774.log 
method newton maxtraps=10 itlimit=100 
solve b1=0.95 
contact name=anode current 
method newton maxtraps=10 itlimit=100 
## Pmax points [InGaP 18-25; GaAs 15-25; InGaNAs 13-25; Ge 11-25] 
solve ianode=-$i25 b1=0.95 
solve ianode=-$i24 b1=0.95 
solve ianode=-$i23 b1=0.95 
solve ianode=-$i22 b1=0.95 
solve ianode=-$i21 b1=0.95 
solve ianode=-$i20 b1=0.95 
solve ianode=-$i19 b1=0.95 
solve ianode=-$i18 b1=0.95 
solve ianode=-$i17 b1=0.95 
solve ianode=-$i16 b1=0.95 
solve ianode=-$i15 b1=0.95 
solve ianode=-$i14 b1=0.95 
solve ianode=-$i13 b1=0.95 
solve ianode=-$i12 b1=0.95 
solve ianode=-$i11 b1=0.95 
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##now solve for Voc 
solve ianode=0 b1=0.95 
log off 
## Full I-V curve plot 
#tonyplot SingleCell_webf.log -set pmax.set 
## 
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APPENDIX B: CHALLENGES IN ADAPTING WINDOWS 
ATLASTM INPUT DECKS TO ATLASTM UNDER UNIX 

While all previous research had been conducted using Silvaco ATLASTM 

and MATLABTM under the Windows operating system, running the same input 

decks under ATLASTM running on the Linux operating system proved initially 

challenging.  In fact, the input decks for Windows using DeckBuildTM will not 

execute correctly under Linux without modification.   

The first problem encountered was that the simulation runs would fail with 

a variety of odd errors reported.  Upon consultation with Silvaco engineers, the 

problem was identified as a text formatting difference between Windows and 

Linux.  Since the input decks of initial simulation attempts were based on copying 

text from a previous thesis and pasting in a text editor in Windows, some odd 

characters were introduced.  Later, when Bates original files were obtained, they 

simulated without this problem.  Fortunately, Linux has a built-in utility for 

correcting this problem.  The utility, dos2unix, is run from the command prompt in 

a terminal window.  Although it has many options and capabilities, the defaults 

worked correctly in this situation.  As an example, consider the Windows file 

Chr0.in which requires conversion.  The user first moves into the Linux directory 

in which the file is located and executes the following command: 

Prompt> dos2unix ./CHR0.in <return> 
The next problem encountered was a difference in how the results of 

computation are automatically stored and referenced using Silvaco tools under 

Windows and Linux.  The solve portion of an input deck first solves for short 

circuit current, extracts this value, and then sets up all the current-voltage curve 

points to solve for based on fractions of the short circuit current.  Under 

Windows, values are automatically saved to a file and then that file is 

automatically referenced for extraction.  Under Linux, this log file must first be 

explicitly established before solving for the current, and then closed before being 

referenced.  The extract init statement must be told the log file’s name.  In 
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addition, the current value extracted under Windows is only for 1/200000th of the 

mesh and must be multiplied.  Under Linux, the value extracted is the current for 

the entire cell and thus does not need to be multiplied by the mesh size.  When 

the original input deck was run, a pop up window gave the following 

announcement:  “** INFORMATION ** Monitor String from selected list detected.  

The simulation has been stopped.”  In the log file from the simulation, the 

following comments were recorded before the simulation halted:  
Warning: 'set' syntax not recognized.   
Deckbuild passing ‘set' command to simulator. 
set isc=*200000 
 ** ERROR #  1 ** 
 * Invalid card type specification * 
 ==> set 

Below are sample sections of input decks.  The Linux version has been 

adjusted to simulate correctly. 

 
 
solve init 
method gummel newton maxtraps=10 itlimit=25 
solve b1=0.9 
 
## Getting Isc for I-V curve points 
method newton maxtraps=10 itlimit=100 
solve b1=0.95 
extract name="isc" max(i."cathode") 
set isc=$isc*$width3d 
set i1=$isc/10 
set i2=$i1+$isc/10 
 

solve init 
method gummel newton maxtraps=10 itlimit=25 
solve b1=0.9 
log outfile=CHR4294967295.log 
solve b1=0.95 
log off 
extract init infile="CHR4294967295.log" 
extract name="isc" max(i."cathode") 
## set isc=$isc*$width3d 
set isc=$isc  
set i1=$isc/10 
set i2=$i1+$isc/10 
 

 
Table 6.   Sample Extraction code under Windows (Left) and Linux (Right) 

 
Upon successful execution of an adapted Windows input deck under 

Linux, cell output data was compared.  Although current-voltage curves were 

similar, they were not identical.  Upon inspection of the log files automatically 

generated by ATLASTM, the following differences were observed: 

 
ATLAS> solve init 
CONSTANTS: 
 Boltzmann's constant  = 1.38066e-023 J/K 
 Elementary charge     = 1.6023e-019 C 
 Permitivity in vacuum = 8.85418e-014 F/cm 

ATLAS> solve init 
CONSTANTS: 
 Boltzmann's constant  = 1.38066e-23 J/K 
 Elementary charge     = 1.60219e-19 C 
 Permitivity in vacuum = 8.85419e-14 F/cm 
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 Temperature           = 300 K 
 Thermal voltage       = 0.0258502 V 

 Temperature           = 300 K 
 Thermal voltage       = 0.025852 V 

 
Table 7.   Scientific Constants used by ATLASTM under Windows (Left) and 

Linux (Right) 
 

To ensure results are consistent with previous work, ten input decks were 

run using the original Windows format and under Linux using the adaptation 

described above.  The output values obtained under Windows and Linux were 

then compared.  The input decks chosen were a wide range intended to ensure 

every variable has at least one parameter change.  In the plot below, nine of the 

chromosome pairs’ iv plots are displayed.  One chromosome had an order of 

magnitude lower power and is not shown on this plot. 
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Figure 26.   Comparison of IV characteristics obtained under Windows and Linux 
 

When plotted individually, it is easy to see that each pair (Windows and 

Linux for the same chromosome) follow almost exactly the same plot.  

MATLABTM analysis revealed that the largest percentage difference in obtained 
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power values was around 5% - and this difference was observed on only 5 out of 

150 current voltage points.  The majority were less than one percent.  Both 

methods produced the same ranking of chromosomes according to maximum 

power.  It is clear that both versions of input decks are effectively defining the cell 

configuration and obtaining results.  In addition, the absolute value of the results 

obtained is reasonably close. 

Engineers at Silvaco have explained the discrepancy by noting that there 

are differences in the way Windows and Linux handle floating point number 

formats and arithmetic.  Their recommendation was that if the absolute value of 

the number is critical (as opposed to the relative ranking) then the Linux or Unix 

generated values are likely  more accurate. 
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APPENDIX C: DISTRIBUTED COMPUTING PROGRAMMER’S 
NOTES 

Before starting this thesis work, the author had two undergraduate 

programming classes (one in ADA, the other in C) and one graduate class with 

simplistic C programs.  The majority of software problems encountered were 

easily solved with a fairly basic set of programming skills.  The LAM-MPI web site 

had a very thorough self paced class on the basics of programming for LAM-MPI 

distributed computing.  In addition, the leaders of LAM-MPI along with other MPI 

projects have now consolidated their efforts to build Open MPI which was coded 

from scratch to incorporate the best of all the MPI projects.  Exact duplication of 

the methods used are not likely to work on other platforms and might not be 

advisable even if they did.  When originally conceived and coded, the software 

used for this thesis had many provisions for capabilities which, at the time, were 

thought to be useful to this research.  The test of time has shown that simple is 

better, and re-coding of significant portions has been undertaken just to make the 

code simpler and easier to maintain.  The code base has gone through several 

generations as the research progressed.  The coarse sampling, gradient, remote 

genetic algorithm, and remote real-valued multi-junction optimization all required 

adjustments and changes to the code.  As such, the goal of this appendix is not 

to disclose at length all the code used, but simply to highlight a couple of the 

more difficult challenges in developing the distributed computing software.   

The first major obstacle was that Silvaco ATLASTM does not always give 

predictable results.  When Bates used MATLABTM to make system calls to run 

ATLASTM, ATLASTM crashes or unexpected results would often cause the 

MATLABTM code to halt or crash when it tried to deal with the problems.  Upon 

further investigation, updated versions of Windows and MATLABTM had a slightly 

different system call function.  In previous versions the system call would return 

to MATLABTM some information as to the status of the system call.  Bates then 

had MATLABTM sit in a waiting loop looking for a file called done.log.  The last 
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item of his ATLASTM input deck instructed ATLASTM to create an empty log file 

called done.log.  However, ATLASTM doesn’t always complete a simulation run.  

Bad data or a corrupted input deck can cause the simulation to fail.  The changes 

in system calls made this situation difficult to detect from the MATLABTM 

environment.  In the course of this thesis, no method of checking up on the 

simulations was found within the MATLABTM environment. 

Since the distributed computing platform used in this thesis was running 

on LAM-MPI on the Linux operating system, other methods of process 

supervision were available.  The client process, when instructed to conduct a 

simulation, would utilize the C fork and execl commands to accomplish process 

supervision.  This implementation is well articulated in the documentation header 

for the code below:  
/* 
 *  Created on Oct 11, 2004 4:02:33 PM 
*/ 
/* 
 *                      MPI based Solar Cell Simulation 
 * 
 * 
 *    Created:          11 Oct 2004 
 *    Last Modified:    18 Nov 2005 
 *    Author:           James Utsler 
 * 
 
 *  mpi_solar_atlas_call.c contains the source code for calling atlas  
 *  to act on a specified input file or "deck" under the silvaco TCAD  
 *  tools.  With minor modification, this may be used to call a  
 *  different application.  The general concept is the need to call  
 *  atlas but also monitor 
 *  the "atlas call" in case it freezes, hangs, or crashes in some way.   
 *  To accomplish this, the unix fork and execl commands are used to  
 *  fork program execution and then have the child program call atlas.   
 *  The parent monitors the child process by looking at the child  
 *  process's status file which is located in the /proc/procid#/status  
 *  file, where procid# is replaced by the actual process id of the  
 *  child.  A specific position in the status file gives the state of  
 *  execution.  This program only checks if the character is a Z which  
 *  denotes zombie status.  Zombie status means that the child has  
 *  completed execution and is waiting for the parent to "reap" them.   
 *  If in this condition, the parent "reaps" the child and then returns  
 *  to the calling program stating successful execution.  If the child  
 *  process is not in the zombie state, the parent goes to sleep for a  
 *  specified period of time, wakes up, and checks the childs status  
 *  again.  This continues until a "timed-out" threshold is met.  The  
 *  interval between checks and timed-out threshold are specified in  
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 *  the call to this program.   
 * 
 *  Inputs: 
 *    chromosome - specifies what chromosome to call atlas on, this  
 *       program uses chromosome to build the input filename and log  
 *       filename for the atlas call 
 *    how_long_to_wait - specifies the length of time the parent  
 *       process waits before "killing" the child and reporting faulty  
 *       execution (time in seconds) 
 *    how_long_between_checks - specifies how long the parent sleeps  
 *       between checks on the child (time is in seconds) before  
 *       calling this program, the master program has already written  
 *       the input file which corresponds to this chromosome 
 * 
 *  Returns: 
 *    0 with successful execution. 
 *    1 with timed-out or a faulty system call 
 * 
 */ 
 
#include <stdio.h> 
#include <unistd.h> 
 
int supervised_atlas_call(unsigned long int chromosome, 
   int how_long_to_wait, 
int how_long_between_checks) 
{ 
    
   int pid; 
    
   FILE *process_status_file; 
   int i=0; 
   int return_value; 
   char chromstr[20]; 
   char cmdstr[40]="kill -TERM \0"; 
   char pidstr[10]; 
   char tempstr[50]="/proc/\0"; 
    
   char status; 
    
   printf("Simulating Chrom %lu\n",chromosome); 
   pid=fork(); 
    
   if (pid!=0) { 
      /*printf("Parent:child's pid=%d\n",pid);*/ 
      sprintf(cmdstr,"kill -TERM %i\0",pid);  /* this builds the kill   
                                               signal command string */ 
      sprintf(pidstr,"%lu\0",pid); 
             
      sprintf(tempstr,"/proc/%lu/status\0",pid); 
       
      while (1) { 
         sleep(how_long_between_checks); 
         i=i+how_long_between_checks;     /* increment time counter */ 
         process_status_file=fopen(tempstr,"r");  /* open the status  
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                                                      file */ 
          
         if (process_status_file!=NULL) {         /* if the file was  
                                                    "Openable" */ 
            fscanf(process_status_file,"%*s %*s\n%*s %c",&status); 
               /* pick out the status letter */ 
 
            /*printf("Parent:child status= %c\n",status);*/ 
            fclose(process_status_file);           /* close the file */ 
         } 
         else break;    /* exit the loop if file was not accessible */ 
         if (status=='Z') {     /* exit the loop if the child completed  
                                        processing */ 
            return_value=0;     /*  it would have status Z -> Zombie */ 
            wait(pid); 
            break; 
         } 
          
          
         if (i>how_long_to_wait) {     /* kill child if time is over  
                                     user defined seconds per loop */ 
            /*printf("parent killing child\n");*/ 
            system(cmdstr); 
            return_value=1; 
            break; 
         } 
         /*printf("parent waiting time=%i\n",i);*/          
      } 
      /*printf("Parent:exiting now\n");*/ 
   } 
   else { 
      /*printf("Child executing program:my pid=%d\n",pid);*/ 
      sprintf(chromstr,"CHR%lu.in\0",chromosome); 
      sprintf(tempstr,"CHR%lu.txt\0",chromosome); 
      /*execl("/bin/ping","ping","-c","1","www.yahoo.com",0);*/ 
      execl("/opt/silvaco2/bin/deckbuild","deckbuild","-run", 
           "-ascii",chromstr,"-outfile",tempstr,0); 
      printf("Problem with Atlas child process call!\n"); /* this line  
                                              should not be executed */ 
      return_value=1; 
   } 
   return return_value; 
} 
 

Once the above code completes, assuming a successful simulation, the 

client program parses out the ATLASTM output file to ensure that sufficient data 

was generated and then reports back as to the success of the simulation.  If the 

ATLASTM process fails or the data does not check out, the distributed system 

monitor is notified and the failed simulation is noted in status files.  
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Another concern with process completion is that the processors of the 

distributed computing platform are located in a student lab.  In some cases 

students would reboot a computer if something went awry or occasionally shut 

down a computer at the end of their work thinking it was an environmentally 

appropriate step to conserve energy.  LAM-MPI is not flexible on adding or 

deleting nodes after the platform is initiated.  In early software versions of this 

application, this meant that the entire system might break down if the distributed 

system monitor was blocked waiting to send or receive a message from one of 

the clients.  In latter versions of the software, a periodic check-in system was 

used.  Clients always default to sending a non-blocking message to the 

distributed system monitor asking for work.  If no work is available, the client is 

simply told to check in at a later time.  However, every time this occurs, the 

distributed system monitor scrubs its records to see if any simulation has 

exceeded a maximum time threshold.  If this is the case, the simulation would be 

assigned to another computer and the timed-out client would be black-listed so 

that no further results would be accepted from that client.  This also prevents the 

case of two nodes reporting results for the same simulation. 
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APPENDIX D: MATLABTM GENETIC ALGORITHM AND DIRECT 
SEARCH TOOLBOX NOTES 

Working within the Genetic Algorithm and Direct Search Toolbox made 

modifying GA parameters significantly easier.  It allowed the programmer to 

focus more on the research being conducted.  The GUI allows the easy 

configuration of parameters and offers an option to generate a MATLABTM script 

which will execute the parameters chosen without the GUI interface.  For 

consistency among multiple simulations, the scripts were used for the actual 

simulations.  The following code was used for the extended GA runs on single 

junction cells: 
function [X,FVAL,REASON,OUTPUT,POPULATION,SCORES] =  ga1 
%%   This is an auto generated M file to do optimization with the 
Genetic Algorithm and 
%    Direct Search Toolbox. Use GAOPTIMSET for default GA options 
structure. 
  
generation=0; 
save('generation.txt','generation','-ascii'); 
clear generation; 
  
FID=fopen('path_list.txt','w'); 
fprintf(FID,'./Ge_320.00 25 11 4 320.00'); 
fclose(FID); 
  
system('copy path_list.txt Z:'); 
  
%%Fitness function 
fitnessFunction = @single_junction_remote_batch_fitness_function; 
%%Number of Variables 
nvars = 28; 
%Linear inequality constraints 
Aineq = []; 
Bineq = []; 
%Linear equality constraints 
Aeq = []; 
Beq = []; 
%Bounds 
LB = []; 
UB = []; 
%Nonlinear constraints 
nonlconFunction = []; 
%Start with default options 
options = gaoptimset; 
%%Modify some parameters 
options = gaoptimset(options,'PopulationType' ,'bitString'); 
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options = gaoptimset(options,'PopulationSize' ,36); 
options = gaoptimset(options,'Generations' ,50); 
options = gaoptimset(options,'StallTimeLimit' ,Inf); 
options = gaoptimset(options,'SelectionFcn' ,@selectionroulette); 
options = gaoptimset(options,'CrossoverFcn' ,@crossovertwopoint); 
options = gaoptimset(options,'MutationFcn' ,{ @mutationuniform 0.10 }); 
options = gaoptimset(options,'Display' ,'off'); 
options = gaoptimset(options,'PlotFcns' ,{ @gaplotbestf 
@gaplotscorediversity }); 
options = gaoptimset(options,'Vectorized' ,'on'); 
%%Run GA 
[X,FVAL,REASON,OUTPUT,POPULATION,SCORES] = 
ga(fitnessFunction,nvars,Aineq,Bineq,Aeq,Beq,LB,UB,nonlconFunction,opti
ons); 
 

The following code is the fitness function used for single-junction extended 

GA runs. 
function 
fitness_values=InGaP_single_junction_remote_batch_fitness_function(gene
ration_trait_vector) 
% 
% This function takes a matrix of trait values for each genetic 
algorithm 
% generation and acts as a liason between the genetic algorithm running 
on 
% a windows machine and a distributed computing system which will 
handle 
% all solar cell simulation.  The communication is acheived using 
simple 
% status bit files and data files.  When ready to simulate a 
generation, 
% this function will save the data in a formatted manner to the shared 
file 
% system of the distributed computing project.  It will then set a file 
% with a status bit indicating that the data is ready.  The distributed 
% system will then simulate all the data, archive the input and output 
files, 
% and then update a status file indicating that results are ready.  The 
% data will then be formatted for return to the MATLAB GA tool and this 
% function will exit.  It will be called again at the beginning of the 
next 
% iteration. 
% 
% 
% clear 
  
format long; 
  
%% First convert the bit strings to chromosome numbers compatible with  
% previously built GA/distributed computing code 
%  
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[number_chroms,chrom_bitlength]=size(generation_trait_vector) 
FID=fopen('master_chromosome_list.txt','w'); 
chromosomes=[]; 
for i=1:number_chroms 
    
chromosomes=[chromosomes;bits_to_traits(generation_trait_vector(i,:),28
)]; 
    fprintf(FID,'%d\n',chromosomes(i)); 
end   
fclose(FID); 
  
system('copy master_chromosome_list.txt Z:'); 
  
results_ready=0; 
save('Z:\results_ready.txt','results_ready','-ascii'); 
  
chromosomes 
  
%% Next, set the status bit to let the remote system know that the data 
% file is ready for simulation. 
  
sim_start=1; 
save('Z:\simulation_data_ready.txt','sim_start','-ascii'); 
  
%% Now periodically check the status bit which indicates that 
simulation is 
% complete. 
  
results_ready=0; 
while results_ready==0 
     results_ready=load('Z:\results_ready.txt'); 
end 
  
%% Now create a directory to store the resulting log files 
generation=load('generation.txt'); 
command=sprintf('copy Z:\\temp_result_matrix.txt 
C:\\GenAlg\\Gen%d.txt',generation); 
system(command); 
  
  
command=sprintf('C:\\GenAlg\\Gen%d.txt',generation); 
simulation_data=load(command) 
fitness_values=sort_fitness_results(chromosomes,simulation_data); 
generation=generation+1; 
save('generation.txt','generation','-ascii'); 
system('erase Z:\temp_result_matrix.txt'); 
return 
 

For single-junction optimization, the data validation was conducted within 

the distributed computing system.  When simulation runs were complete, a 

summary file giving a line of information for each chromosome was passed back 
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to MATLABTM.  The following function was used to match up the returned data 

file to the known chromosome list in MATLABTM to ensure that fitness values are 

returned in the correct format. 
function 
ordered_fitness=sort_fitness_results(given_population,computed_results) 
% 
%  When data comes back from a "vectorized" distributed computing 
%  simulation, there is the possibility that a specific chromosome  
%  would not simulate successfully.  In this case, there will be no  
%  result entry coming back from the distributed computing setup for  
%  that specific chromosome.  This function compares the result file to  
%  the actual population and ensures all fitness values correspond to  
%  the correct chromosomes.  In the case where no result comes back, it  
%  is assigned the fitness value of 0. 
% 
% 
given_elements=length(given_population); 
result_elements=size(computed_results,1); 
given_population(:,2)=1:given_elements; 
  
given_population=sortrows(given_population,1); 
computed_results=sortrows(computed_results,1); 
  
result_placeholder=1; 
ordered_fitness=[]; 
for i=1:given_elements 
    updated=0; 
    for j=1:result_elements 
        if given_population(i,1)==computed_results(j,1) 
            
ordered_fitness=[ordered_fitness;given_population(i,2),computed_results
(j,2)]; 
            updated=1; 
        end 
    end 
    if updated==0 
        ordered_fitness=[ordered_fitness;given_population(i,2),0]; 
    end 
end 
ordered_fitness=sortrows(ordered_fitness,1); 
ordered_fitness=-ordered_fitness(:,2); 
 

When conducting the real-valued optimization of multi-junction cells, the 

author learned that not all features of the toolbox are fully implemented.  When 

using real-valued number representation of traits, the toolbox allows the user to 

specify upper and lower bounds for trait values.  In addition, both linear and 

nonlinear constraints relating variables may be introduced.  However, when 

these options are used, the toolbox defaults to a condition in which it’s initial 
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population is a single test chromosome.  When complete, the second generation 

consists of clones of the test chromosome with a few minor mutations.  This 

essentially usurps the genetic diversity which is key in a genetic algorithm based 

optimization.  Discussion with MATLABTM engineers confirmed that this will be 

fixed in future versions and that there are ways to work around this problem.  As 

a simple fix, the method used in this thesis is to manually code in MATLABTM a 

routine to build a random population within the upper and lower bound 

constraints for each trait.  The GA function of the toolbox is then called.  The 

following code was used: 
function [X,FVAL,REASON,OUTPUT,POPULATION,SCORES] =  
ga2owncreate(population) 
%%   This is an auto generated M file to do optimization with the 
Genetic Algorithm and 
%    Direct Search Toolbox. Use GAOPTIMSET for default GA options 
structure. 
  
  
  
generation=0; 
save('generation.txt','generation','-ascii'); 
clear generation; 
figure(1); 
  
%%Fitness function 
fitnessFunction = @quad_junction_remote_batch_fitness_function; 
%%Number of Variables 
nvars = 29; 
%Linear inequality constraints 
Aineq = []; 
Bineq = []; 
%Linear equality constraints 
Aeq = []; 
Beq = []; 
%Bounds 
%          window    emitter    base      bsf 
ingaplb = [0 1e16    0 1e16     0 1e16    0 1e16]; 
%          window    emitter    base      bsf 
ingapub = [10 1e20  10 1e20   10 1e20  10 1e20]; 
%          window    emitter    base      bsf 
gaaslb = [0 1e16    0 1e16     0 1e16    0 1e16]; 
%          window    emitter    base      bsf 
gaasub = [10 1e20  10 1e20   10 1e20  10 1e20]; 
%          window    emitter    base      bsf 
inganaslb = [0 1e16    0 1e16     0 1e16    0 1e16]; 
%          window    emitter    base      bsf 
inganasub = [10 1e20  10 1e20   10 1e20  10 1e20]; 
%          window    emitter    base     
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gelb =     [0 1e16    0 1e16    1e16]; 
%          window    emitter    base     
geub =     [10 1e20  10 1e20   1e20]; 
  
LB=[ingaplb gaaslb inganaslb gelb]; 
UB=[ingapub gaasub inganasub geub]; 
  
% now create the initial population by multiplying a matrix of random 
% variables by a scale factor matrix (the difference in upper and lower  
% bounds) and then adding the lower bound to the scaled values 
  
popsize=90; 
population=rand(popsize,nvars); 
scalar_factor=UB-LB; 
for i=1:popsize 
    population(i,:)=scalar_factor.*population(i,:); 
    population(i,:)=LB+population(i,:); 
end 
  
drews_data=load('drews_data.txt') 
population=[drews_data;drews_data;drews_data;population(7:popsize,:)] 
% LB=[]; 
% UB =[]; 
%Nonlinear constraints 
nonlconFunction = []; 
%Start with default options 
options = gaoptimset; 
%%Modify some parameters 
options = gaoptimset(options,'InitialPop' ,population);  
options = gaoptimset(options,'PopulationSize' ,popsize); 
options = gaoptimset(options,'Generations' ,Inf); 
options = gaoptimset(options,'StallGenLimit' ,100); 
options = gaoptimset(options,'StallTimeLimit' ,Inf); 
options = gaoptimset(options,'TolFun' ,0); 
options = gaoptimset(options,'TolCon' ,0); 
options = gaoptimset(options,'SelectionFcn' ,@selectionroulette); 
options = gaoptimset(options,'CrossoverFcn' ,@crossovertwopoint); 
options = gaoptimset(options,'MutationFcn' ,{ @mutationadaptfeasible 
0.01 }); 
options = gaoptimset(options,'Display' ,'off'); 
options = gaoptimset(options,'PlotFcns' ,{ @gaplotbestf 
@gaplotscorediversity }); 
options = gaoptimset(options,'Vectorized' ,'on'); 
%%Run GA 
[X,FVAL,REASON,OUTPUT,POPULATION,SCORES] = 
ga(fitnessFunction,nvars,Aineq,Bineq,Aeq,Beq,LB,UB,nonlconFunction,opti
ons); 

 
The following code is the fitness function used for real-valued multi-

junction optimization: 
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function 
fitness_values=quad_junction_remote_batch_fitness_function(generation_t
rait_vector) 
% 
% This function takes a matrix of trait values for each genetic  
% algorithm generation and acts as a liason between the genetic  
% algorithm running on a windows machine and a distributed computing  
% system which will handle all solar cell simulation.  The  
% communication is acheived using simple status bit files and data  
% files.  When ready to simulate a generation, this function will save  
% the data in a formatted manner to the shared file system of the  
% distributed computing project.  It will then set a file with a status  
% bit indicating that the data is ready.  The distributed system will  
% then simulate all the data, archive the input and output files, and  
% then update a status file indicating that results are ready.  The  
% data will then be formatted for return to the MATLAB GA tool and this 
% function will exit.  It will be called again at the beginning of the  
% next iteration. 
% 
% 
  
  
  
  
format long; 
%generation_size=36; 
%% First save the data to a file for further simulation.  The file's  
% format will be a chromosome number corresponding to the row in the  
% trait matrix by the actual traits listed in order. 
% 
status_list=[1:size(generation_trait_vector,1)]' 
%data_file=[chrom_numbers,generation_trait_vector] 
generation_trait_vector 
  
results_ready=0; 
save('Z:\results_ready.txt','results_ready','-ascii'); 
  
save('Z:\generation_trait_data.txt','generation_trait_vector','-
ascii'); 
%save('C:\GenAlgeration_trait_data.txt','generation_trait_vector','-
ascii'); 
  
FID=fopen('master_chromosome_list.txt','w'); 
for i=1:size(generation_trait_vector,1) 
    fprintf(FID,'%d\n',i); 
end   
fclose(FID); 
     
system('copy master_chromosome_list.txt Z:'); 
  
%% Next, set the status bit to let the remote system know that the data 
% file is ready for simulation. 
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sim_start=1; 
save('Z:\simulation_data_ready.txt','sim_start','-ascii'); 
  
%% Now periodically check the status bit which indicates that  
% simulation is complete. 
generation=load('generation.txt'); 
  
%% Now create a directory to store the resulting log files 
  
command=sprintf('mkdir C:\\GenAlg\\Gen%d',generation); 
system(command); 
  
results_ready=0; 
while results_ready==0 
    results_ready=load('Z:\results_ready.txt'); 
    command=sprintf('move Z:\\GenDataGood\\*.* 
C:\\GenAlg\\Gen%d',generation); 
    system(command); 
    command=sprintf('move Z:\\GenDataBad\\*.* 
C:\\GenAlg\\Gen%d',generation); 
    system(command); 
end 
  
status_list=analyze_simulation_success(status_list) 
  
  
system('erase Z:\completed_chromosome_logbak.txt'); 
system('erase Z:\chromosome_error_logbak.txt'); 
  
%% Now create a directory to store the resulting log files 
  
  
command=sprintf('move Z:\\GenDataBad\\*.* 
C:\\GenAlg\\Gen%d',generation); 
system(command); 
command=sprintf('move Z:\\GenDataGood\\*.* 
C:\\GenAlg\\Gen%d',generation); 
system(command); 
command=sprintf('move Z:\\completed_chromosome_log.txt 
C:\\GenAlg\\Gen%d',generation); 
system(command); 
command=sprintf('move Z:\\chromosome_error_log.txt 
C:\\GenAlg\\Gen%d',generation); 
system(command); 
command=sprintf('move Z:\\generation_trait_data.txt 
C:\\GenAlg\\Gen%d',generation); 
system(command); 
  
%% The following loop copies a log file to a local drive, calls a  
% function to determine the cell's max power value, and then stores the  
% result in a matrix listing chromosome numbers and the max power  
% (fitness value).  Since MATLAB's GA Tool minimizes functions, the  
% negative of the max power is stored. 
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save 
  
for chrom=1:size(status_list,1) 
    if status_list(chrom,2)==1 
        filename=sprintf('C:\\GenAlg\\Gen%d\\CHR%d',generation,chrom); 
        [isctot,voctot,imptot,vmptot,pmaxtot,fftot]=mj_ivmaxp(filename) 
        status_list(chrom,3)=-pmaxtot;   
    end 
end 
  
fitness_values=status_list(:,3) 
  
%% Now format the data for return to the MATLAB genetic algorithm tool. 
generation=generation+1; 
save('generation.txt','generation','-ascii'); 
return 
 

For multi-junction result interpretation, the raw data files were subjected to 

a data validation within the distributed computing system to ensure a simulation 

had completed.  For output power calculation, the result files were interpreted 

from within MATLABTM using a routine developed by Max Green in his thesis 

work.  The following code was used: 
function 
[isctot,voctot,imptot,vmptot,pmaxtot,fftot]=mj_ivmaxp(runinfile) 
  
format long; 
  
datacol=textread([runinfile '.log'],'%*s%u%*[^\n]','headerlines',18); 
  
numelect=datacol(1); 
cols=datacol(2); 
  
beams=mod(cols-4,numelect*3)+1; 
  
beamstuff=[]; 
for i=1:beams 
    beamstuff=[beamstuff '%*f']; 
end 
  
trodestuff=['%*f%*f%f%f%*f%*f']; pwredge=0;  badpmax=0; 
for i=1:(numelect/2) 
    [Io(:,i) Vo(:,i)]=textread([runinfile '.log'],['%*s' beamstuff 
'%*f%*f%*f' trodestuff '%*[^\n]'], ... 
        'headerlines',20); 
    trodestuff=['%*f%*f%*f%*f%*f%*f' trodestuff]; 
    Po(:,i)=Io(:,i).*Vo(:,i); 
    isc(i)=max(Io(:,i)); 
    [mincurrent indx]=min(Io(:,i)); 
    voc(i)=Vo(indx,i);  
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    [Pmax(i) indx]=max(Po(:,i)); 
    while Vo(indx,i)>Vo(indx+1,i)  
        disp(['*** SUSPICIOUS PMAX' num2str(i) '=' num2str(Pmax(i)) ' 
DROPPED ***']); 
        [Pmax(i) addon]=max(Po((indx+1):max(size(Po(:,i))),i)); 
        indx=indx+addon; 
        badpmax=1; 
    end 
    if indx==2 
        pwredge=1; 
        disp(['*** INCOMPLETE LOWER BOUNDING OF PMAX' num2str(i) ' 
***']); 
        numboundprob=numboundprob+1; 
    elseif indx==(max(size(Po(:,i)))-1) 
        pwredge=2; 
        disp(['*** INCOMPLETE UPPER BOUNDING OF PMAX' num2str(i) ' 
***']); 
        numboundprob=numboundprob+1; 
    end 
    FF(i)=Pmax(i)/(isc(i)*voc(i)); 
    imp(i)=Io(indx,i); 
    vmp(i)=Vo(indx,i); 
end 
  
[pmaxtot,imptot,itotal,vtotal]=maxpower(Io,Vo,imp,isc,voc,numelect); 
  
isctot=max(itotal); 
voctot=max(vtotal); 
vmptot=pmaxtot/imptot; 
fftot=pmaxtot/(isctot*voctot); 
Vtotmax=vtotal; 
Iomax=Io; 
Itotmax=itotal; 
  
pmaxline=imptot*ones(size(vtotal)); 
xlim=1.1*max(vtotal); 
ylim=1.1*max(isc); 
figure(2); 
  
if (numelect/2)==4 
    
plot(Vo(:,1),Io(:,1),'b',Vo(:,2),Io(:,2),'r',Vo(:,3),Io(:,3),'g',... 
        Vo(:,4),Io(:,4),'k',vtotal,itotal,'m',vtotal,pmaxline,'c:'); 
    legend('InGap','GaAs','InGaNAs','Ge','Total Cell',... 
        ['Pmax= ' num2str(pmaxtot*1000) 'mW'],0); 
elseif (numelect/2)==3 
    
plot(Vo(:,1),Io(:,1),'b',Vo(:,2),Io(:,2),'r',Vo(:,3),Io(:,3),'g',... 
        vtotal,itotal,'m',vtotal,pmaxline,'c:'); 
    legend('InGap','GaAs','Ge','Total Cell',... 
        ['Pmax= ' num2str(pmaxtot*1000) 'mW'],0); 
end 
  
xlabel('Voltage (V)'); 
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ylabel('Current (A)'); 
axis([0 xlim 0 ylim]); 
figure(1); 
 

The preceeding function relies on another power interpretation routine 

also developed by previous researchers at NPS.  That routine follows: 

 
function 
[maxp,imaxp,itotal,vtotal]=maxpower(Io,Vo,imp,isc,voc,numelect) 
  
% add up powers of each cell at lowest isc down to lowest imp 
% record max power and overall imp 
  
itry=linspace(min(imp),min(isc),10); 
itry=[linspace(min(imp)*0.6,min(imp),10) itry]; 
  
% Io=known y's (decreasing) 
% Vo=known x's (increasing) 
% itry=given y's 
% vtgt=target x's 
  
istart(1)=2; 
for i=1:(numelect/2)-1 
    for j=istart(i):max(size(Io(:,i))) 
        if Io(j,i)<0.00001 
            istart(i+1)=j+1; 
            break; 
        end 
    end 
end 
istart((numelect/2)+1)=max(size(Io(:,1)))+1; 
  
for j=1:max(size(itry)) 
    maxpwr(j)=0; 
    vtotal(j)=0; 
    for i=1:(numelect/2) 
        pivot=0; 
        for x=istart(i):(istart(i+1)-1) 
            if Io(x,i)<itry(j) 
                pivot=x; 
                if pivot==istart(i) 
                    pivot=istart(i)+1; 
                end 
            end 
            if pivot 
                break; 
            end 
        end 
        if ~pivot 
            pivot=istart(i+1)-1; 
        end 
        linterp=(Io(pivot,i)-itry(j))/(Io(pivot,i)-Io(pivot-1,i)); 
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        vtgt=Vo(pivot,i)-((Vo(pivot,i)-Vo(pivot-1,i))*linterp); 
        vtotal(j)=vtotal(j)+vtgt; 
        maxpwr(j)=maxpwr(j)+(itry(j)*vtgt); 
    end 
end 
  
itotal=[0 itry min(isc)]; 
vtotal=[sum(voc) vtotal 0]; 
[maxp indx]=max(maxpwr); 
imaxp=itry(indx); 
 

As discussed earlier in this thesis, the routines above resort to linear 

interpolation to approximate values on an IV curve when they are not specifically 

known through simulation data.  The total error introduced by using this 

approximation for all four junctions of the cell adds up quickly. 
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